Final-Term Exam

Dec. 17, 2007
15:00~17:00

1. (40\%) In 1998, Chevron's Genesis Spar was installed in the Gulf of Mexico at the location of $790-\mathrm{m}$ depth. It is the secondbuilt spar platform which has a hull of 37.2m diameter and $214.9-\mathrm{m}$ length. The draft of the hull is 198.1-m and a topside deck has the freeboard of $16.8-\mathrm{m}$.
(1) For the following condition of longcrested wave spectrum, obtain the wave height of 100 -year return period. Is the freeboard of this spar will be enough for this wave condition? Assume Rayleigh distribution for wave peaks. (15\%)

- Modal wave period: 14.08 sec
- Significant wave height: 6.93 m
(2) If the incident waves are not long-crested and short-crested, do you think that the wave height of 100-year return period will be larger or smaller? (5\%)
(3) If there is uniform current of $3 \mathrm{~m} / \mathrm{sec}$ in this region, obtain approximately the drag force on the hull. Choose a proper drag coefficient, and justify your choice. (15\%)
(4) If VIV (vortex-induced vibration) is observed in the presence of current, what is
 the period of the vortex shedding if the Strouhal number is 0.28 ? (5\%)

2. (30\%) Let's assume that you have a wave spectrum as shown below:

(1) Describe this wave spectrum with four components. Obtain the amplitudes and frequencies of the four wave components. (15\%)
(2) What are the significant wave height and mean energy density if wave elevations and wave peaks can be described with Gaussian and Rayleigh distribution. (5\%)
(3) If this spectrum is observed during the development of a hurricane, sketch roughly how the spectra will be look like (i) after the fully development of hurricane and (ii) during calm-down of hurricane. (10\%)
3. (30\%) Let's consider a vertical cylinder of diameter d in regular waves. As you learned in class, we can approximate the sectional force using Morrison's equation as follows:

$$
d F \equiv d F_{I}+d F_{D}=C_{I} \rho \frac{\pi d^{2}}{4} \frac{d u}{d t}+\frac{1}{2} C_{D} d \rho u|u|
$$

where all the notations are the same introduced in the class. When the wave flows can be described by potential theory, answer the following questions:

(1) Write the maximums of horizontal velocity u and $d u / d t$ using linear waves at the center of the body., i.e. $\mathrm{x}=0, \mathrm{z}=0$. (5\%)
(2) Write $\left|d F_{D}\right| /\left|d F_{I}\right|$ as a function of maximum horizontal particle velocity at $\mathrm{z}=0$.

Here, | | indicates the maximum value. In other words, you need to write as below: (15\%)

$$
\frac{\left|d F_{D}\right|}{\left|d F_{I}\right|}=\text { Function }\left(C_{D}, C_{M}, \frac{T u_{\max }}{d}\right) \text { where T means wave period. }
$$

The last term $\frac{T U_{\max }}{d}$ is called Keulegan-Carpenter number (K.C. number)
(3) Show that the viscous drag becomes relatively larger when K.C. number becomes large. (5\%)
(4) The period of drag force is a half of that of inertia force. Explain why. (5\%)

Extra Point (5\%, Total will not exceed 100\%.): Write any suggestion to improve this class.

