Electromagnetics

Midterm 1 | Date: Apr. 9, 2019 | Duration: 75 minutes | Full marks: 500 points

* Follow the notation used in the textbook (ε : permittivity, μ : permeability, ρ : charge density, σ : conductivity, $\boldsymbol{E}, \boldsymbol{D}, \boldsymbol{B}, \boldsymbol{H}$: electric field, electric flux, magnetic flux, magnetic field intensity vectors, \boldsymbol{J} : Volume current density vector). Note that the Bold characters denote the vector quantities.

Q1 (130 points)

(a) Write down Maxwell's equations and the two constitutive equations. (20 points)
(b) Derive general boundary conditions for the field quantities from Maxwell's equations. (40 points)
(c) Derive non-homogeneous wave equations for vector magnetic and scalar electric potentials under Lorentz condition. Assume that the wave exists in the simple medium (linear, isotropic, and homogeneous). (30 points)
(d) Suppose that there is time-varying charge density at the origin, which is the only source of the electromagnetic wave and is given by

$$
\rho(\boldsymbol{R}, t)=\rho_{0} \delta(\boldsymbol{R}) \cos \omega t
$$

Here, $\delta(\boldsymbol{R})$ denotes a Dirac-delta function specified in three-dimensional space.

Q: Determine the scalar electric potential V at a distance of $|\boldsymbol{R}|$ from the origin caused by $\rho(\boldsymbol{R}, t)$ under Lorentz condition. (20 points)
Q: Describe the process how you will obtain the electric and magnetic fields by using the given electric potential [No derivation required!]. (20 points)

Q2 (70 points)

Suppose that the medium is source-free, simple (linear \& isotropic) and lossless.
(a) Derive the homogeneous wave equation for the electric field. (20 points)
(b) Determine the solution to the equation obtained in (a) and briefly discuss its physical meaning. (20 points)
(c) Describe the relationship between electric field, magnetic field, and propagation direction of the electromagnetic wave obtained in (b). [No derivation required!] (15 points)
(d) For a simple medium whose constitutive parameters are not functions of time, one can derive the following rate equation from Maxwell's equations:

$$
-\oint_{S}(\mathbf{E} \times \mathbf{H}) \cdot d \mathbf{s}=\frac{\partial}{\partial t} \int_{V}\left(\frac{1}{2} \varepsilon E^{2}+\frac{1}{2} \mu H^{2}\right) d v+\int_{V} \sigma E^{2} d v .
$$

Discuss the physical meaning of this rate equation. (15 points)

Q3 (60 points)

Suppose that there is a plane interface (xy plane) at $z=0$ between free space $(z<0)$ and a perfect conductor $(z$ >0). There exists time-varying current flowing along such interface and is given by
$\boldsymbol{J}_{\boldsymbol{s}}=\boldsymbol{a}_{\boldsymbol{x}} J_{s 0} \cos \omega t$. Under the given condition, determine the instantaneous electric and magnetic field expressions in free space (i.e. at $z<0$).

Electromagnetics

Midterm 1 | Date: Apr. 9, 2019 | Duration: 75 minutes |Full marks: 500 points

Q4 (60 points)

A light ray is incident from air obliquely on a transparent sheet of thickness d with an index of refraction n, as shown below. The angle of incidence is θ_{i}. Find θ_{t}, the distance l_{1} at the point of exit, and the amount of the lateral displacement l_{2} of the emerging ray.

Q5 (100 points)

A uniform plane wave with

$$
\boldsymbol{E}_{\boldsymbol{i}}(x, z)=\boldsymbol{a}_{\boldsymbol{x}} E_{i 0} \cos \omega\left(t-\frac{z}{u_{p}}\right)
$$

in medium $1\left(\varepsilon_{1}, \mu_{1}\right)$ is incident normally onto a lossless dielectric slab $\left(\varepsilon_{2}, \mu_{2}\right)$ of a thickness d backed by a perfectly conducting plane as shown below. Determine the thickness d that makes $\boldsymbol{E}_{\boldsymbol{1}}(x, z)$ the same as if the dielectric slab were absent.

Q6 (50 points)

Discuss the physical meaning of the critical angle ($\mathbf{1 5}$ points) and Brewster's angle ($\mathbf{3 5}$ points) for the TE and TM waves in non-magnetic media.

Q7 (30 points)

Describe two examples how polarization of light is exploited in real-world applications.

