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Midterm 2 |  Question 1(a): Parallel-plate waveguide

Q1. A parallel-plate waveguide consists of two perfectly conducting plates that are parallel to each other. The conductors are departed by a 
dielectric medium characterized by (μ, ε) with thickness b. For simplicity, assume that the plates are infinite in extent in x-direction such that 
fields do not vary in that direction and the effect by fringing fields are neglected.


(a) Derive the electric and magnetic fields of the allowed modes for TE (25 points), TM (20 points), and TEM (15 points) waves that propagate 
in the parallel-plate waveguide. Find the cut-off frequency for each case.

For TM mode (20 points) 
- Longitudinal fields (Ez and Hz)

 Hz = 0
 ∇2Ez + k

2Ez = 0,   where  Ez y, z( ) = Ez
0 y( )e−γ z

⎧
⎨
⎪

⎩⎪

- Bound condition (Et = 0 at conducting interface)

→  d
2Ez

0

dy2 + h2Ez
0 = 0 ∵h2 = k2 + γ 2( )

Ez
0 y( ) = 0,    where  y = 0  and  y = d

Ez
0 y( ) = An sin hy( ) = An sin nπ

d
y⎛

⎝⎜
⎞
⎠⎟ ,     n = 1, 2, ...( )

- Solution

- Transverse fields (Ex, Ey, Hx, Hy)

 Ex
0 = − 1

h2 γ ∂Ez
0

∂x
+ jωµ ∂Hz

0

∂y
⎛
⎝⎜

⎞
⎠⎟

 Ey
0 = − 1

h2 γ ∂Ez
0

∂y
− jωµ ∂Hz

0

∂x
⎛
⎝⎜

⎞
⎠⎟

 Hx
0 = − 1

h2 γ ∂Hz
0

∂x
− jωε ∂Ez

0

∂y
⎛
⎝⎜

⎞
⎠⎟

 Hy
0 = − 1

h2 γ ∂Hz
0

∂y
+ jωε ∂Ez

0

∂x
⎛
⎝⎜

⎞
⎠⎟

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

 Ex
0 y( ) = 0

 Ey
0 y( ) = − γ

h2 An cos nπ y
d

⎛
⎝⎜

⎞
⎠⎟

 Hx
0 y( ) = jωε

h
An cos nπ y

d
⎛
⎝⎜

⎞
⎠⎟

 Hy
0 y( ) = 0

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

γ = h2 − k2 = nπ
d

⎛
⎝⎜

⎞
⎠⎟
2

−ω 2µε fc =
h

2π µε
= n
2d µε

 (Hz)

- Cutoff frequency (γ = 0) (5 points)

(15 points)

(Deduce -5 points if B.C. not used)
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For TE mode (25 points) 
- Longitudinal fields (Ez and Hz)

 Ez = 0
 ∇2Hz + k

2Hz = 0,   where  Hz y, z( ) = Hz
0 y( )e−γ z

⎧
⎨
⎪

⎩⎪

→  d
2Hz

0

dy2
+ h2Hz

0 = 0 ∵h2 = k2 + γ 2( )

- B.C. provided by transverse fields (Et = Ex = 0) at conducting interface

 Ex
0 = − 1

h2 γ ∂Ez
0

∂x
+ jωµ ∂Hz

0

∂y
⎛
⎝⎜

⎞
⎠⎟

 Ey
0 = − 1

h2 γ ∂Ez
0

∂y
− jωµ ∂Hz

0

∂x
⎛
⎝⎜

⎞
⎠⎟

 Hx
0 = − 1

h2 γ ∂Hz
0

∂x
− jωε ∂Ez

0

∂y
⎛
⎝⎜

⎞
⎠⎟

 Hy
0 = − 1

h2 γ ∂Hz
0

∂y
+ jωε ∂Ez

0

∂x
⎛
⎝⎜

⎞
⎠⎟

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

 Ex
0 y( ) = − jωµ

h2

dHz
0 y( )
dy

= jωµ
h

Bn sin nπ y
b

⎛
⎝⎜

⎞
⎠⎟

 Ey
0 y( ) = 0

 Hx
0 y( ) = 0

 Hy
0 y( ) = − γ

h2

dHz
0 y( )
dy

= γ
h
Bn sin nπ y

b
⎛
⎝⎜

⎞
⎠⎟

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

Ex
0 y( ) = − jωµ

h2

dHz
0 y( )
dy

= 0
y=0  and y=b

(at the surface of conducting plates)

∴
dHz

0 y( )
dy

= 0  at y = 0 and y = b∴Hz
0 y( ) = Bn cos hy( ) = Bn cos

nπ y
b

⎛
⎝⎜

⎞
⎠⎟ ,    n = 1,2!

By using B.C. on the right, we get

(n cannot be 0!)

- Transverse fields - Cutoff frequency (γ = 0)

γ = h2 − k2 = nπ
d

⎛
⎝⎜

⎞
⎠⎟
2

−ω 2µε fc =
h

2π µε
= n
2d µε

 (Hz)

(5 points)
(20 points)

(Deduce -10 points if B.C. not used)



Midterm 2 |  Question 1(a): Parallel-plate waveguide

 Ez
0 y( ) = An sin nπ

d
y⎛

⎝⎜
⎞
⎠⎟

 Hz
0 y( ) = 0

⎧
⎨
⎪

⎩⎪

fc =
h

2π µε
= n
2d µε

 (Hz)

For TEM mode (15 points) 
- Method (1): From TM results,

 Ex
0 y( ) = 0

 Ey
0 y( ) = − γ

h2 An cos nπ y
d

⎛
⎝⎜

⎞
⎠⎟

 Hx
0 y( ) = jωε

h
An cos nπ y

d
⎛
⎝⎜

⎞
⎠⎟

 Hy
0 y( ) = 0

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

n = 0

 Ez
0 y( ) = 0

 Hz
0 y( ) = 0

⎧
⎨
⎪

⎩⎪

fc =
n

2d µε
= 0 (Hz)

 Ex
0 y( ) = 0

 Ey
0 y( ) = − lim

n→0

γ
h2 A0 = E0

 Hx
0 y( ) = lim

n→0

jωε
h

A0 =
E0

η
 Hy

0 y( ) = 0

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

(10 points) 
You have to justify that as n = 0, Ey0 and Hx0 converges 
to constant values. Otherwise, -5 points deduced!

- Method (2): Analytically solve it starting from Maxwell’s equations (Refer to lecture note 12-1)

(5 points)
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(b) Discuss the relationship of wave impedance vs. frequency for the allowed modes of the parallel-plate waveguides. (40 points)

 Ex
0 = − 1

h2 γ ∂Ez
0

∂x
+ jωµ ∂Hz

0

∂y
⎛
⎝⎜

⎞
⎠⎟

 Ey
0 = − 1

h2 γ ∂Ez
0

∂y
− jωµ ∂Hz

0

∂x
⎛
⎝⎜

⎞
⎠⎟

 Hx
0 = − 1

h2 γ ∂Hz
0

∂x
− jωε ∂Ez

0

∂y
⎛
⎝⎜

⎞
⎠⎟

 Hy
0 = − 1

h2 γ ∂Hz
0

∂y
+ jωε ∂Ez

0

∂x
⎛
⎝⎜

⎞
⎠⎟

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

For TM mode 
- From given equations,

ZTM = Ex
0

Hy
0 = −

Ey
0

Hx
0 =

γ TM

jωε
   Ω( )    !(4) ZTE =

Ex
0

Hy
0 = −

Ey
0

Hx
0 =

jωµ
γ TE

   Ω( )    !(5)

 Ex
0 = − 1

h2 γ ∂Ez
0

∂x
+ jωµ ∂Hz

0

∂y
⎛
⎝⎜

⎞
⎠⎟

 Ey
0 = − 1

h2 γ ∂Ez
0

∂y
− jωµ ∂Hz

0

∂x
⎛
⎝⎜

⎞
⎠⎟

 Hx
0 = − 1

h2 γ ∂Hz
0

∂x
− jωε ∂Ez

0

∂y
⎛
⎝⎜

⎞
⎠⎟

 Hy
0 = − 1

h2 γ ∂Hz
0

∂y
+ jωε ∂Ez

0

∂x
⎛
⎝⎜

⎞
⎠⎟

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

For TE mode 
- From given equations,

- By plugging (4) into (3),

ZTM = γ TM

jωε
=η 1− fc

f
⎛
⎝⎜

⎞
⎠⎟

2

- By plugging (5) into (3),

ZTE =
jωµ
γ TE

= η

1− fc
f

⎛
⎝⎜

⎞
⎠⎟

2

ZTEM = Ex
0

Hy
0 =

jωµ
γ TEM

   (Ω)   !(1)

For TEM mode 
- From TM mode equations,

Propagation contant vs. Frequency 
- For TEM modes,

- For TE & TM modes,

γ = −k2 = jk = jω µε    !(2)

- By plugging in (2) into (1),

ZTEM = jωµ
γ TEM

== µ
ε
=η

γ = h2 − k2 = h2 −ω 2µε and fc =
h

2π µε

γ TE  or  γ TM = h 1− f
fc

⎛
⎝⎜

⎞
⎠⎟

2

   !(3)

(10 points)
(10 points) (10 points)
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1

Z
η

f
fc1

ZTE
η

ZTM
η

Evanescent 
modes

f < fc f > fc

Propagating 
modes

ZTEM
η

TEM independent of frequency. 
(5 points) 
TE & TM below fc are evanescent 
modes.  
(5 points)
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Q2. A waveguide is constructed so that the cross section of the guide forms a triangle with sides of length a, a and sqrt(2a) as shown below. 
The walls are perfect conductors and inside is air with (μ0, ε0).


(a) Determine electric and magnetic fields of the allowed modes for TE, TM and TEM waves propagating in the guide (120 points)

a

a
x

y1. Start with wave equation for Ez

∇xy
2 +∇z

2( )Ez + k
2Ez = 0,   where  Ez x, y, z( ) = Ez

0 x, y( )e−γ z

→

∇xy
2 Ez

0 + h2Ez
0 = 0,   where  h2 = k2 + γ 2

2. Separation of variables

h2 = kx
2 + ky

2

Ez
0 x, y( ) = X x( )Y y( )    →    

 d
2X x( )
dx2 + kx

2X x( ) = 0

 d
2Y y( )
dy2 + ky

2Y y( ) = 0

⎧

⎨
⎪⎪

⎩
⎪
⎪

where
3. Solution form

X x( ) = Asin kxx( )+ Bcos kxx( )
Y y( ) = C sin kyy( )+ Dcos kyy( )

4. Three boundary conditions 
- At y = 0 and a, Ez0 = 0

 Y 0( ) = D = 0

 Y a( ) = C sin kya( ) = 0

⎧
⎨
⎪

⎩⎪

→Y y( ) = C sin mπ
a
x⎛

⎝⎜
⎞
⎠⎟ ,  m = 1,2,3,!

- At x = 0 and a, Ez0 = 0 (similarly as above)

→ X x( ) = Asin nπ
a
x⎛

⎝⎜
⎞
⎠⎟ ,  n = 1,2,3,!

- At y = x, Ez0 = 0

Ez
0 x, x( ) = Ez0 sin

nπ
a
x⎛

⎝⎜
⎞
⎠⎟ sin

mπ
a
x⎛

⎝⎜
⎞
⎠⎟ = 0

(For all 0 ≤ x ≤ a)

∴Ez0 = 0   →    Ez
0 x, y( ) = Ez0 sin

nπ
a
x⎛

⎝⎜
⎞
⎠⎟ sin

mπ
a
x⎛

⎝⎜
⎞
⎠⎟ = 0

TM cannot exist! 
Only TE modes! 

(40 points)
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a

a
x

y

6. Three B.C. provided by transverse fields

Hz
0 x, y( ) = X x( )Y y( )    →    

 X x( ) = Asin kxx( )+ Bcos kxx( )
 Y y( ) = C sin kyy( )+ Dcos kyy( )

⎧
⎨
⎪

⎩⎪

5. Derivation of TE mode 
- Start with wave equations with Hz (as previously)

 Ex
0 = − 1

h2 γ ∂Ez
0

∂x
+ jωµ ∂Hz

0

∂y
⎛
⎝⎜

⎞
⎠⎟

 Ey
0 = − 1

h2 γ ∂Ez
0

∂y
− jωµ ∂Hz

0

∂x
⎛
⎝⎜

⎞
⎠⎟

 Hx
0 = − 1

h2 γ ∂Hz
0

∂x
− jωε ∂Ez

0

∂y
⎛
⎝⎜

⎞
⎠⎟

 Hy
0 = − 1

h2 γ ∂Hz
0

∂y
+ jωε ∂Ez

0

∂x
⎛
⎝⎜

⎞
⎠⎟

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

Ex

Ey

- At x = 0 and a, Ey0 = 0

∂Hz
0

∂x x=0  and a

=
∂X x( )
∂x

Y y( )
x=0  and a

= 0

∂X x( )
∂x

= Akx cos kxx( )− Bkx sin kxx( )
∂X 0( )
∂x

= Akx = 0

∂X a( )
∂x

= Bkx sin kxa( ) = 0

⎧

⎨
⎪⎪

⎩
⎪
⎪

→    X x( ) = Bcos nπ
a
x⎛

⎝⎜
⎞
⎠⎟

- At y = 0 and a, Ex0 = 0 (Similarly)

→Y y( ) = Dcos mπ
a
x⎛

⎝⎜
⎞
⎠⎟

∴Hz
0 x, y( ) = X x( )Y y( ) = H0z cos

nπ
a
x⎛

⎝⎜
⎞
⎠⎟ cos

mπ
a
y⎛

⎝⎜
⎞
⎠⎟

 Ex
0 x, y( ) = E0x cos nπ

a
x⎛

⎝⎜
⎞
⎠⎟ sin mπ

a
y⎛

⎝⎜
⎞
⎠⎟

 Ey
0 x, y( ) = E0y sin nπ

a
x⎛

⎝⎜
⎞
⎠⎟ cos mπ

a
y⎛

⎝⎜
⎞
⎠⎟

⎧

⎨
⎪⎪

⎩
⎪
⎪
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a

x

y

6. Three B.C. provided by transverse fields 
- At x = y 

E-field parallel to the diagonal side = 0 → 

Ey

Ex

Ex
0 x, x( )cosπ

4
+ Ey

0 x, x( )cosπ
4
= 0

→    E0x cos nπ
a
x⎛

⎝⎜
⎞
⎠⎟ sin mπ

a
x⎛

⎝⎜
⎞
⎠⎟ + E0y sin nπ

a
x⎛

⎝⎜
⎞
⎠⎟ cos mπ

a
x⎛

⎝⎜
⎞
⎠⎟ = 0

→    E0x tan mπ
a
x⎛

⎝⎜
⎞
⎠⎟ = −E0y tan nπ

a
x⎛

⎝⎜
⎞
⎠⎟

Hz
0 x, y( ) = H0z cos nπ

a
x⎛

⎝⎜
⎞
⎠⎟ cos nπ

a
y⎛

⎝⎜
⎞
⎠⎟

 Ex
0 x, y( ) = −E0x cos nπ

a
x⎛

⎝⎜
⎞
⎠⎟ sin nπ

a
y⎛

⎝⎜
⎞
⎠⎟

 Ey
0 x, y( ) = E0x sin nπ

a
x⎛

⎝⎜
⎞
⎠⎟ cos nπ

a
y⎛

⎝⎜
⎞
⎠⎟

⎧

⎨
⎪⎪

⎩
⎪
⎪

Hz
0 x, y( ) = H0z cos nπ

a
x⎛

⎝⎜
⎞
⎠⎟ cos nπ

a
y⎛

⎝⎜
⎞
⎠⎟

 Ex
0 x, y( ) = −E0x cos nπ

a
x⎛

⎝⎜
⎞
⎠⎟ sin nπ

a
y⎛

⎝⎜
⎞
⎠⎟

 Ey
0 x, y( ) = E0x sin nπ

a
x⎛

⎝⎜
⎞
⎠⎟ cos nπ

a
y⎛

⎝⎜
⎞
⎠⎟

⎧

⎨
⎪⎪

⎩
⎪
⎪

∵
 Ex

0 x, y( ) = E0x cos nπ
a
x⎛

⎝⎜
⎞
⎠⎟ sin mπ

a
y⎛

⎝⎜
⎞
⎠⎟

 Ey
0 x, y( ) = E0y sin nπ

a
x⎛

⎝⎜
⎞
⎠⎟ cos mπ

a
y⎛

⎝⎜
⎞
⎠⎟

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

• Note that n SHOUD NOT be 0. 

• The rest (Hx0, Hy0, and relationship between constants Hz0 and Ex0) can be easily 

calculated by substituting above to transverse field equations.

Solution (1): E0x = E0y and m = -n (TEn,-n mode) Solution (2): E0x = -E0y and m = n (TEn,n mode)
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(b) If some modes are not allowed, explain why not. (30 points)

∵∇⋅B = 0 (Magnetic flux lines close upon themselves)

- According to Ampere’s circuital law (see <Fig. 1> and <Fig. 2>),

H ⋅d l
C!∫ = J + ∂D

∂t
⎛
⎝⎜

⎞
⎠⎟ ⋅dsS∫

Line integral of H around any closed loop C in a transverse plane 
= 

Longitudinal conduction & displacement currents through the loop C

- By definition, TEM wave does not have longitudinal Ez

→ No longitudinal current (J and δD/δt) can flow

→ Thus, B and H do not exist in a transverse plane

→ Thus, E and D also do not exist in a transverse plane

∴ TEM cannot exist in a single conductor waveguide!

• In (a), we showed that due to the B.C. at the diagonal side, TM cannot be supported. (10 points) 
• A given waveguide is one type of single conductor and therefore, TEM cannot be supported. (20 points)

Ampere’s circuital law 
<Fig. 1> 

(Img src: Toppr)

Ampere’s circuital law 
<Fig. 2> 

(img src: Pearson Education)

‣Proof of 2nd statement 
- Suppose that TEM wave exists in such a guide

- Its B and H should form a closed loop in a transverse plane (xy)
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Q3. A circular waveguide is a circular metal pipe having a uniform cross section of radius a. Inside is filled with a dielectric medium 
characterized by (μ, ε). Assume the metal pipe is a perfect conductor for simplicity.


(a) Derive the general expressions for electric and magnetic fields for TE and TM modes. (140 points)

Derivation of TM mode 
- Start with wave equations for longitudinal fields

 Hz = 0

 ∇rφ
2 +∇z

2( )Ez + k
2Ez = 0

⎧
⎨
⎪

⎩⎪

(By definition)

Ez
0 r,φ( ) = R r( )Φ φ( )

- Separation of variables

Ez r,φ, z( ) = Ez
0 r,φ( )e−γ zwhere

→∇rφ
2 Ez

0 + h2Ez
0 = 0 where h2 = k2 + γ 2

- Two ODEs obtained

 d
2Φ φ( )
d 2φ

+ n2Φ φ( ) = 0

 r
R r( )

d
dr

r dR r( )
dr

⎛
⎝⎜

⎞
⎠⎟
+ h2r2 = n2

⎧

⎨
⎪
⎪

⎩
⎪
⎪

- Solutions to Bessel’s differential equation

R r( ) = CnJn hr( )+ DnYn hr( )
where Jn and Yn are the first and second kind of Bessel’s functions.

The solution should include the axis region where r = 0 and Yn(0) diverges 
to infinity. Thus, Dn = 0. (Deduce -15 points if not mentioned)

∴R r( ) = CnJn hr( )
- Solution to 2nd-order ODE for φ

∴Φ φ( ) = cosnφ
All the field components for a circular waveguide are periodic with 
respect to φ. Thus, Φ should be in a sinusoidal form and because of 
periodicity, n should be an integer value. (Deduce -15 points if not 
mentioned about n)
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Derivation of transverse fields 

- Transverse E-fields can be expressed in terms of longitudinal E-field as below

→ ET
0( )TM = arEr

0 + aφEφ
0 = ar − γ

h2
∂Ez

0

∂r
⎛
⎝⎜

⎞
⎠⎟
+ aφ − γ

h2r
∂Ez

0

∂φ
⎛
⎝⎜

⎞
⎠⎟

ET
0( )TM = arEr

0 + aφEφ
0 = − γ

h2
∇T Ez

0 where ∇T = ar
∂
∂r

+ aφ
∂
r∂φ

- Transverse H-fields can be expressed in terms of transverse E-field as below

HT( )TM = 1
ZTM

az × ET( )TM⎡⎣ ⎤⎦ where ZTM = γ
jωε

   Ω( )

HT( )TM = arHr
0 + aφHφ

0⎡⎣ ⎤⎦ =
jωε
γ
az × arEr

0 + aφEφ
0( )

arHr
0 + aφHφ

0 = ar − jωε
γ

Er
0⎛

⎝⎜
⎞
⎠⎟
+ aφ

jωε
γ

Eφ
0⎛

⎝⎜
⎞
⎠⎟

 Er
0 = − jβ

h2

∂Ez
0

∂r
= − jβ

h
Cn ′Jn hr( )cosnφ

 Eφ
0 = − jβ

h2r
∂Ez

0

∂φ
= jβn
h2r

CnJn hr( )sinnφ

 Hr
0 = −ωε

β
Eφ

0 = − jωεn
h2r

CnJn hr( )sinnφ

Hφ
0 = ωε

β
Er

0 = − jωε
h

Cn ′Jn hr( )cosnφ

⎧

⎨

⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪

where  Ez
0 r,φ( ) = CnJn hr( )cosnφ

Final form 
- By using two relations as given left,

If all procedures correct, give 70 points



Midterm 2 |  Question 3(a): Circular waveguide
Derivation of TE mode 

- Longitudinal fields

 Ez = 0
 Hz r,φ, z( ) = Hz

0 r,φ( )e−γ z
⎧
⎨
⎪

⎩⎪ where ∇rφ
2 Hz

0 + h2Hz
0 = 0 and Hz

0 r,φ( ) = R r( )Φ φ( )
- Similarly to the TM case,

∴Hz
0 r,φ( ) = DnJn hr( )cosnφ (TE modes)

- Transverse magnetic fields:

HT
0( )TE = arHr

0 + aφHφ
0⎡⎣ ⎤⎦ = − γ

h2
∇T Hz

0 = − γ
h2

ar
∂
∂r

+ aφ
∂
r∂φ

⎛
⎝⎜

⎞
⎠⎟
Hz

0⎡

⎣
⎢

⎤

⎦
⎥

- Transverse electric fields:

ET
0( )TE = arEr

0 + aφEφ
0⎡⎣ ⎤⎦ = −ZTE az × HT

0( )TE( ) = − jωµ
γ

arHr
0 + aφHφ

0( )⎡

⎣
⎢

⎤

⎦
⎥

 Hr
0 = − jβ

h2

∂Hz
0

∂r
= − jβ

h
Dn ′Jn hr( )cosnφ

 Hφ
0 = − jβ

h2r
∂Ez

0

∂φ
= jβn
h2r

DnJn hr( )sinnφ

 Er
0 = −ωε

β
Hφ

0 = − jωεn
h2r

DnJn hr( )sinnφ

Eφ
0 = ωε

β
Hr

0 = − jωε
h

Dn ′Jn hr( )cosnφ

⎧

⎨

⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪

If all procedures correct, give 70 points



Midterm 2 |  Question 3(b): Circular waveguide

(b) Identify the cut-off frequencies for propagating TE and TM modes. What is the dominant mode for the circular waveguide? (60 points)

For TM mode 
- From the boundary condition

z

a

Eφ
0
Ez
0

Eφ
0 = Ez

0 = 0 for all φ at r = a

Ez
0 a,φ( ) = CnJn ha( )cosnφ = 0   →    Jn ha( ) = 0

- Lowest ha satisfying Jn(ha) = 0:

ha = 2.405   →    hTM 01 =
2.405
a

- Cutoff frequency

fc =
h

2π µε
   →    ∴ fc( )TM 01 =

hTM 01
2π µε

= 0.383
a µε

For TE mode 
- From the boundary condition

z

a

Eφ
0
Ez
0 = 0

Eφ
0 = 0 for all φ at r = a

Dominant mode! (10 points)

Eφ
0 = ωε

β
Hr

0 = − jωε
h

Dn ′Jn hr( )cosnφ = 0   →    ′Jn hr( ) = 0

- Lowest ha satisfying J’n(ha) = 0:

ha = 1.841   →    hTE11 =
1.841
a

- Cutoff frequency

fc =
h

2π µε
   →    ∴ fc( )TE11 =

hTE11
2π µε

= 0.293
a µε

(15 points) (15 points)

(10 points) (10 points)



Midterm 2 |  Question 4(a): Dielectric waveguide
Q4.

(a) Derive the general expressions for electric and magnetic fields for the propagating TM modes in the dielectric waveguide (80 points). Explain 
under what condition and requirements the waves can propagate within the waveguide (40 points). (in the free space regions, derive the fields 
for the only one side, i.e. either above or below the guide.)

Longitudinal fields

 Hz = 0
 ∇2Ez + k

2Ez = 0
⎧
⎨
⎩⎪

(By definition)

Ez y, z( ) = Ez
0 y( )e−γ zwhere

→    ∇y
2Ez

0 + h2Ez
0 = 0 where h2 = γ 2 + k2

Solution for dielectric region (|y| ≤ d/2) 
- Waves propagating in z-direction w/o attenuation

- Sinusoidal form → Bounded standing wave

∇y
2Ez

0 + hd
2Ez

0 = 0 where hd
2 = γ 2 + k2 =ω 2µdεd − β

2 > 0

Ez
0 y( ) = Eo sinhdy + Ee coshdy

Solution for free-space region (y ≥ d/2) 
- Waves bounded only within dielectric by total internal reflection

- Waves not radiating away from dielectric (i.e. evanescent)

∇y
2Ez

0 + h0
2Ez

0 = 0 where h0
2 = γ 2 + k2 =ω 2µ0ε0 − β

2 < 0

Here, we denote h0
2 ! −α 2

Ez
0 y( ) = Ce

−α y−d
2

⎛
⎝⎜

⎞
⎠⎟ + De

α y−d
2

⎛
⎝⎜

⎞
⎠⎟   where y ≥ d 2

Traverse field components 
- There are two nonzero components, Ey0 and Hx0)

 Ex
0 = − 1

h2 γ ∂Ez
0

∂x
+ jωµ ∂Hz

0

∂y
⎛
⎝⎜

⎞
⎠⎟

 Ey
0 = − 1

h2 γ ∂Ez
0

∂y
− jωµ ∂Hz

0

∂x
⎛
⎝⎜

⎞
⎠⎟

⎧

⎨
⎪
⎪

⎩
⎪
⎪

 Hx
0 = − 1

h2 γ ∂Hz
0

∂x
− jωε ∂Ez

0

∂y
⎛
⎝⎜

⎞
⎠⎟

 Hy
0 = − 1

h2 γ ∂Hz
0

∂y
+ jωε ∂Ez

0

∂x
⎛
⎝⎜

⎞
⎠⎟

⎧

⎨
⎪
⎪

⎩
⎪
⎪

(∵Not to diverge to infinity)

(Deduce -5 points for each why the solution for 
dielectric / free-space should be in a sinusoidal / 
exponential form)



Midterm 2 |  Question 4(a): Dielectric waveguide

For odd TM modes 
- In the dielectric region (|y| ≤ d/2)

Ez
0 y( ) = Eo sinhdy

Ey
0 y( ) = − γ

hd
2
∂Ez

0

∂y
= − jβ

hd
Eo coshdy

Hx
0 y( ) = jωεd

hd
2

∂Ez
0

∂y
= jωεd

hd
Eo coshdy

- In the free-space region (y ≥ d/2)

‣ According to B.C. that Ez0 should be continuous,

Ez
0 y( ) = Ce

−α y−d
2

⎛
⎝⎜

⎞
⎠⎟    →    Ez

0 d
2

⎛
⎝⎜

⎞
⎠⎟ = C = Eo sin

hdd
2

Ey
0 y( ) = − γ

h0
2
∂Ez

0

∂y
= − jβ

α
Ce

−α y−d
2

⎛
⎝⎜

⎞
⎠⎟

Hx
0 y( ) = jωε0

h0
2

∂Ez
0

∂y
= jωε0

α
Ce

−α y−d
2

⎛
⎝⎜

⎞
⎠⎟

For even TM modes 
- In the dielectric region (|y| ≤ d/2)

Ez
0 y( ) = Ee coshdy

Ey
0 y( ) = − γ

hd
2
∂Ez

0

∂y
= jβ
hd
Ee sinhdy

Hx
0 y( ) = jωεd

hd
2

∂Ez
0

∂y
= − jωεd

hd
Ee sinhdy

- In the free-space region (y ≥ d/2)

‣ According to B.C. that Ez0 should be continuous,

Ez
0 y( ) = Ce

−α y−d
2

⎛
⎝⎜

⎞
⎠⎟    →    Ez

0 d
2

⎛
⎝⎜

⎞
⎠⎟ = C = Ee cos

hdd
2

Ey
0 y( ) = − γ

h0
2
∂Ez

0

∂y
= − jβ

α
Ce

−α y−d
2

⎛
⎝⎜

⎞
⎠⎟

Hx
0 y( ) = jωε0

h0
2

∂Ez
0

∂y
= jωε0

α
Ce

−α y−d
2

⎛
⎝⎜

⎞
⎠⎟

Deduce -5 points if B.C. is not used 
(If all procedures correct, Give 40 points)

Deduce -5 points if B.C. is not used 
(If all procedures correct, Give 40 points)



Midterm 2 |  Question 4(a): Dielectric waveguide

Condition and requirements for wave confinement (40 points) 
- εd > ε0 for having total internal reflection (20 points) 
- ω 2µ0ε0 − β

2 < 0

where β 2 = k2 − hd
2 =ω 2µdεd − hd

2

→    ω > hd
µdεd − µ0ε0

Here, the smallest allowable hd for n-th TE mode satisfies
hdd
2

= nπ

∴  f > n
d µdεd − µ0ε0

,   n = 0, 1, 2, ! (20 points)



Midterm 2 |  Question 4(a): Dielectric waveguide

(b) Discuss the physical meaning of cutoff frequencies for the dielectric waveguide by comparing with those of other waveguide structures 
(parallel-plate and rectangle/circular waveguides). What factors do affect cutoff frequencies of these waveguides? (40 points)

Commonality 
- Waves of frequencies above fc are confined within and propagate along the waveguide. (5 points) 
- fc is determined by propagating modes (TE, TM), dimension and materials of the waveguides (μd, εd). (5 points)


Difference 
- For dielectric waveguide, waves of f < fc are no longer bounded to the dielectric and radiate away into free-space. (5 points)

‣ Condition for fc: α = 0. (5 points)

‣ Two cutoff frequency exists for even and odd modes


- For rectangular/circular waveguide, waves of frequencies below fc are attenuated. (5 points)

‣ Condition for fc: γ = 0. (5 points)

‣ Common expression for cutoff frequency is given as


fco =
n

d µdεd − µ0ε0

 and  fce =
n +1 2

d µdεd − µ0ε0

fc =
h

2π µε
 (5 points)

 (5 points)



Midterm 2 |  Question 4(a): Dielectric waveguide

(c) Transcendental equations for TM modes are given as below. If you want to send the TM-polarized waves with the frequency whose value 
coincides with the cutoff frequency for the 2nd-order odd TM mode along the dielectric waveguide, how many TM modes are allowed at that 
frequency and what is the difference among such modes? (Note that an order of the mode starts from n = 0) (40 points)

 α
hd

= µ0

µd

tan hdd
2

⎛
⎝⎜

⎞
⎠⎟    !for odd TM modes

 α
hd

= − µ0

µd

cot hdd
2

⎛
⎝⎜

⎞
⎠⎟    !for even TM modes

⎧

⎨
⎪⎪

⎩
⎪
⎪

hddπ 2π 3π 4π
fco, n=0

0
fce, n=0 fco, n=1 fce, n=1 f = fco, n=2

TMe0 TMo1 TMe1

TMo0

Answer 
- There are total 4 allowed modes (20 points) [fco,n=2 should not be 

counted. Deduce -5 points if answer is 5 because of that. Otherwise, 
0 points] 

- At a given frequency f, each mode has a distinct hd value (5 points) 
and therefore, their incident angle at the dielectric/free-space 
interface is different as below. (15 points)

θi
k

hd
β

cosθi =
hd
k
= hd
2π f µdεd



Midterm 2 |  Question 5(a): Rectangular Cavity Resonator

(a) Discuss the physical meaning of the resonant frequency in a rectangular cavity resonator. (30 points) 
(b) Is there power flow within the cavity? Why for your answer? (20 points) 
(c) What is the dominant mode for a rectangular cavity resonator? (50 points)

(a) Resonant frequency 
- Frequency at which resonance occurs (i.e., wave oscillates at fr with greater amplitude than at other frequencies) (20 points)

- It can have multiple values (m, n, p = 0, 1, 2, …) (5 points)

- Determined by dimensions of the resonator (a, b, and d) (5 points)


(b) No power flow (5 points) 
- All the E-fields are in time-phase, and E and H-fields are in time-quadrature (10 points)

- Therefore, time-average Poynting vector becomes zero within the cavity (5 points)


(c) Dominant mode depends on the dimension of the cavity (20 points) 
- If a > b > d, TM110 

- If a > d > b, TE101


- If a = d = b, All three are degenerately dominant

- (Each example accounts for 10 points)


