
Problems sheet for the 1st exam in “Physical Chemistry for Energy Engineering” 
 (12:00-14:00, October 13, 2018) 

*1: Please do not write answers in this problems sheet. What is written in the problems sheet is not evaluated.    
*2: Please return both the problems sheet and the answer sheet to after the exam.    
 
[Problem-I: 15 pt ( 3x5pt)] 1 pt for each item. If all 4 items are correctly answered in each of problems (1), (2) and (3), 
1 pt is added for each. 
(1) Please choose all items that correctly explain about systems. Then, for the wrong statement(s), please explain why it 
is wrong. 

(a) System is a part of space, matter, etc, that is encompassed by a boundary. The outside the system is called 
“surroundings”  
 Correct 
(b) “Closed system” is a system which can exchange neither energy nor matter with its surroundings. Thus, in 
this system, both energy and mass are constant. 
 Wrong. The closed system can exchange the energy. 
(c) “Open system” is a system which can exchange both energy and matter with its surroundings. In this system, 
neither the energy nor the mass are constant. 
 Correct. 
(d) “Thermally isolated system” is a system which cannot exchange energy as a heat with surroundings. In this 
system, the energy is not constant.  

  Correct.  

(2) Please choose all items that correctly explain about the laws of thermodynamics. Then, for the wrong statement(s), 
please explain why it is wrong. 

(a) The first law is about energy, and the second law is about entropy and the third law is about enthalpy. 
Wrong. The third law is about the entropy, not about the enthalpy. 

(b) The third law defines the scale of enthalpy (e.g. the condition which makes enthalpy 0).  
Wrong. ‘enthalpy’ should be replaced with ‘entropy’. 

(c) The second law has several versions of statement. For example, “Heat cannot spontaneously flow from cold 
regions to hot regions without external work being performed on the system” is one of them. 

Correct. 
(d) If we know the value of energy transferred as heat in a process, we can definitely determine the value of 
energy transferred as work in the process using the 1st law. 

Wrong. As the energy conservation law is ΔU=q+w, we need to also know the energy change. 
 

(3) Please choose all items that correctly explain about entropy. Then, for the wrong statement(s), please explain why it 
is wrong. 

(a) The entropy change of a system in any irreversible process is positive, according to the 2nd law of 
thermodynamics. 

Wrong. “The entropy change is positive in any irreversible process” is correct only for an isolated 
system. 

 (b) [J K] is an appropriate unit for entropy. 
Wrong. The unit of entropy should be [J/K] 

 (c) If a system goes through an adiabatic process, the entropy of the system is not changed. 
  Wrong. This is correct only for reversible adiabatic process. 

*I also accept “correct” because I gave such a solution in 2014 exam that I uploaded on eTL. But, 
“wrong” is more appropriate here. 

(d) Entropy is defined as "𝑑𝑑𝑑𝑑 = 𝛿𝛿𝛿𝛿
𝑇𝑇

”.  
 Wrong. This equation is satisfied only for reversible processes. 

 
[Problem-II: 15 pt (3x5pt)] Answer the following questions about heat capacity. 



(1) Please derive the definition of constant-pressure heat capacity (𝐶𝐶𝑃𝑃) of real gas, starting from the definition of heat 
capacity and the first-law of thermodynamics. The definition of heat capacity is given as 𝑞𝑞 = 𝐶𝐶∆T, where 𝑞𝑞 is the heat 
required to increase the temperature of the system by ∆T and 𝐶𝐶 (a heat capacity) is a coefficient to correlate 𝑞𝑞 and ∆T. 
Note that C is usually dependent on the temperature for real gas. 

The heat capacity is given as 𝑞𝑞 = 𝐶𝐶∆T. The constant pressure heat capacity is the heat capacity for reversible 
constant-pressure system.   

By the first law, dU q wδ δ= +  . As the process is reversible, dU PdV qδ= − +  

When the pressure is constant, ( )q dU PdV dU PdV VdP d U PV dHδ = − = − + = + = . Thus, q H= ∆  

Then, the heat capacity is given as
0

,

lim   or more exactly   p T
P P N P

H H HC
T T T∆ →

∆ ∂ ∂     = =     ∆ ∂ ∂     
 

(2) If the system is of ideal gas, Cp can be written total derivative form (not partial derivative form). Please derive the 
equation. 

In the case of ideal gas, H∆  only depends on temperature as 
( ) ( ),   and then   U U T PV nRT H U PV U nRT H T≡ = = + = + ≡  

Thus, independent of the pressure, the constant-pressure heat capacity is given as p
dHC
dT

=  . 

 *Be sure this does not mean dH/dT gives always Cp. Cp is equal to dH/dT of a constant pressure process.  

 (3) Answer Cp of mono-atomic molecule (e.g. He) and Cp of di-atomic molecule (e.g. H2) assuming that they are ideal 
gasses. Explain why such difference occurs between mono-atomic molecule and di-atomic molecule.  

In the case of mono-atomic molecule, the degree of freedom in the kinetic energy is 3. Thus, the internal energy 

becomes 
3
2

U nRT=  . Then, adding PV=nRT term, the constant pressure heat capacity is given as 

( ) 5
2p

d U nRTdHC nR
dT dT

+
= = =  

In the case of di-atomic molecule, the degree of freedom in the kinetic energy of the center of mass is 3, as the 
same with mono-atomic molecule. In addition, we have two rotational degrees of freedom for H-H molecule. 
Although there is additionally 1 vibrational mode, which causes additional nR increase in the heat capacity at 
high temperatures because each vibration mode includes 2 degrees of freedom (kinetic and potential), it is not 
activated at low temperatures and thus is neglected in the ideal gas. Consequently, the internal energy becomes 

5
2

U nRT= . Then, adding PV=nRT term, the constant pressure heat capacity is given as 

( ) 7
2p

d U nRTdHC nR
dT dT

+
= = =  

 
[Problem-III: 15 pt (3x5pt)]  

(1) Using Redlich-Kwong equation as the equation of state, derive an equation to evaluate the work required for an 
isothermal reversible expansion from a molar volume of 𝑉𝑉�1 to 𝑉𝑉�2 (𝑉𝑉�  is a molar volume defined as  “𝑉𝑉� =  𝑉𝑉/𝑛𝑛” where 𝑛𝑛 is 
the amount of gas in mole). The Redlich-Kwong equation can be written as  𝑃𝑃 = 𝑅𝑅𝑅𝑅

𝑉𝑉�−𝐵𝐵
− 𝐴𝐴

𝑉𝑉�(𝑉𝑉�+𝐵𝐵)𝑇𝑇1 2⁄   where A and B are 

constants and A=3.2205 m6 Pa mol-2 K1/2, B=2.985 x10-5 m3 mol-1. Then, using the derived equation above, calculate the 
work involved in the isothermal reversible compression of 3 moles of CH4 gas from a volume of 2.00x10-3 m3 to 1.00x10-3 
m3 at 400 K.   



 

Applying [ ] [ ]
3 3

3 3 3 3
1 2

2.00 10 1.00 100.667 10 , 0.333 10 , 3 , 400
3 3

V m V m n mol T K
− −

− −× ×   = = × = = × = =      

we obtain 6.72 kJ. 

(2) Assuming CH4 is an ideal gas, do the same with (1). 

 In the case of ideal gas, PV=const. is achieved for isothermal process. If it is reversible, we have  

 1

2

ln VnRTw w PdV dV nRT
V V

δ
 

= = − = − =  
 

∫ ∫ ∫   

 This gives 6.91 kJ. 

(3) If the compression is done from 2.00x10-3 m3 to 3.5x10-5 m3, the difference between the Redlich-Kwong equation and 
the ideal gas equation becomes significant. (You don’t need to calculate the values.) Explain why the significant 
difference occurs in this case. 

This is because 3.5x10-5 m3 causes a high pressure, which cannot be nicely described by the ideal gas. 
Specifically, if the pressure is high, the average inter-molecule distance becomes short and the inter-molecular 
interaction becomes non-negligible. In addition, the collision probability of molecules increases. In the case of 
ideal gas, it is assumed that there is no interaction between molecules and there is no collision between 
molecules. This assumption becomes inaccurate for real gasses at high pressures.   

 
 
[Problem-IV: 12 pt (5 pt for (1) and 7 pt for (2))] 

(1) We consider a general cycle (e.g. engine). By a sole operation of this cycle, the following energy transfers occur: 𝑄𝑄𝑖𝑖𝑖𝑖 
[J] (>0), the energy transferred as heat to the system from the surroundings; 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜  [J] (>0), the energy transferred as heat 
to the surroundings from the system; and 𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜  [J] (>0), the net energy transferred as work from the system to the 
surroundings. Please give an equation to express the efficiency (η) of this cycle using 𝑄𝑄𝑖𝑖𝑖𝑖 and 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜, starting from the 
definition of cycle efficiency. 

The efficiency of cycle is defined as 

By the first law,  
As this is a cycle, 0.  Therefore, 

system surroundings

surroundings system

system surroundings surroundings system system surroundings

system surroundings surroundings

W
Q

U W Q Q
U W Q

η →

→

→ → →

→ →

=

∆ = − + −

∆ = =

1

system system surroundings
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surroundings system surroundings system in in

Q
W Q Q Q Q Q
Q Q Q Q

η

→

→ → →

→ →

−

− −
= = = = −

  

(2) Carnot cycle is composed of 4 processes: (i) isothermal expansion using thermostat T1, (ii) adiabatic expansion, (iii) 
isothermal compression using thermostat T2, and (iv) adiabatic compression. Derive the expression of the efficiency 
using T1 and T2.   
 *As definition, “Carnot cycle” is a reversible cycle. 



*Do not only write the answer. Show details how to derive it from the efficiency equation answered in (1). 
 
For simplicity, we derive the relation for ideal gas. (However, as shown below with van der Walls gas, the same 
result is also achieved for real gasses.) 

 
Thus, for the Carnot cycle, the efficiency is expressed as 

1 1system surroundings out L

surroundings system in H

W Q T
Q Q T

η →

→

= = − = −  

 
************************************************************************ 

<Appendix> in the case of van der Waals gas, whose equation of state is 
2

2 2

RT a nRT anP
V b V V b V

= − = −
− −

  

First, derive the formula for the internal energy (U) of van der Waals gas. For this, we use the following 
differential equation: 
 

Here we do not consider there is mass exchange with the surroundings, 
as it is often assumed so in the case of thermodynamic
For the first term

 cycle.
, we assume tha he

 
t t

V T

U UdU dT dV
T V

∂ ∂   = +   ∂ ∂   

 constant volume heat capacity is expressed as , where  is a constant.
(This is a part of the 

For the second term, the p

definition of van 

artial derivative 

der Wa

is the constant-vo

al

lume

s gas).
Vc cnRT c=

 heat capacity, .

Then, the second term is written down as follows:

                 

                  For a reversible process, the first and second law

V
V

V T

U c cnRT
T

S SdS dT dV
T V

∂  ≡ = ∂ 

∂ ∂   = +   ∂ ∂   
s give , then

                  , and

                   Comparing this with  

V T V T

V T

dU TdS PdV

S S S SdU T dT dV PdV T dT T P dV
T V T V

U UdU dT d
T V

= −

     ∂ ∂ ∂ ∂       = + − = + −            ∂ ∂ ∂ ∂           
∂ ∂   = +   ∂ ∂   

,   

                  , where we used one of Maxwell relations, .

Accordingly, for van der Waals gas, 

T T V T V

V V

V

U S P S PT P T P
V V T V T

U P nRTT P T
T T T V

∂ ∂ ∂ ∂ ∂         = − = − =         ∂ ∂ ∂ ∂ ∂         

∂ ∂ ∂   = − =   ∂ ∂ ∂   

( )

2 2

2 2

2

2

2 2 2
2 1

2 1

Therefore,   

1 1 
2

V

V T

n a nRT anP P
b V V b V

U U andU dT dV cnRTdT dV
T V V

cnRdU T T an
V V

   − − = − =  − −   
∂ ∂   = + = +   ∂ ∂   

 
= − − − 

 
∫  



The work, heat, the internal energy change of the system by the isothermal expansion are given as 

( )
( )

( )
( )
( )

2 2
1

1 2 1

2 2 2 2
1 2 1

2 1 2 1

2
1 1 1 1

1

1 1ln

1 1 1 1
2

   thus  lnH

V b
w PdV nRT an

V b V V

cnRU T T an an
V V V V

V b
U q w q nRT

V b

−  
= − = − − − −  

   
∆ = − − − = − −   

   
−

∆ = + =
−

∫

 

Likewise, the work, heat, the internal change of the system by the isothermal compression are given as  
( )
( )

( )
( )
( )

4 2
3

3 4 3

2 2 2 2
3 4 3

4 3 4 3

4
3 3 3 3

3

1 1ln

1 1 1 1
2

   thus  lnL

V b
w PdV nRT an

V b V V

cnRU T T an an
V V V V

V b
U q w q nRT

V b

−  
= − = − − − −  

   
∆ = − − − = − −   

   
−

∆ = + =
−

∫

 

Because the other processes are adiabatic processes, 
( )
( )

( )
( )

2 4
1 3

1 3

ln , ln ,in H out L

V b V b
Q q nRT Q q nRT

V b V b
− −

= = = = −
− −

 

As a result, we have 
( )
( )
( )
( )

4

3

2

1

ln
1 1

ln

L
system surroundings out

surroundings system in
H

V b
T

W V bQ
V bQ Q T
V b

η →

→

−
−

= = − = +
−
−

 

For adiabatic processes, we can derive the following relation (I skip the confirmation here): ( )
( )

( )
( )

4 1

3 2

V b V b
V b V b

− −
=

− −
 

Using this, we confirm 1 L

H

T
T

η = −  for Carnot cycle of van der Waals gas as well. 

*********************************************************  
 
[Problem-V: 25→29 pt, (1)-(2): 4pt for each, (3): 6pt, (4)-(6): 5pt for each] 
Otto cycle is composed of 4 processes: (i) adiabatic compression from V1 to V2, (ii) constant volume heating with a 
thermostat, (iii) adiabatic expansion from V2 to V1, and (iv) constant volume cooling with another thermostat. Assuming 
the system is composed of ideal gas whose constant-volume heat capacity (Cv) is given as (5/2)nR and all processes are 
quasi-static (but not necessarily reversible), answer the following questions.  
(1) Draw P-V diagram of this cycle (x-axis is V and y-axis is P).  

*You don’t need to draw a quantitatively correct figure; please draw a qualitatively correct one.  
(2) Draw T-S diagram of this cycle (x-axis is S and y-axis is T). 

*You don’t need to draw a quantitatively correct figure; please draw a qualitatively correct one.  



 
(from Wikipedia) 
 

(3) Express the heat, work, internal energy change, entropy change for each process. You can use T1, T2, T3, T4 and V1, 
and V2 in the expressions, where T1, T2, T3 and T4 are the beginning temperatures of processes (i), (ii), (iii) and (iv), 
respectively. 
 <Process (i), from state 1 to state 2> adiabatic compression from V1 to V2 

 ( )
2

1

1 1

1 1 2 1

0, 0,

5
2

T

v
T

q S

U w c dT nR T T

= ∆ =

∆ = = = −∫
  

 <Process (ii), from state 2 to state 3> constant volume heating with a thermostat (T3) 

( )
2

2 2 3 2

0
5
2v

w

U q c T nR T T

=

∆ = = ∆ = −
 

This process is not reversible because the heat flow occurs between the system and the surroundings while 
there are some temperature differences between them. To calculate the entropy change, we consider an 
imaginary reversible process, where the temperature of the system increases by one-by-one contacting to 
infinitely many thermostats, each of which holds the infinitesimally higher temperature than the system at each 
moment. With this imaginary reversible cycle, the entropy change is written as 

  
3 3

2 2

3
2

2

5
52 ln
2

T Trev
T T

nRdTdq TS nR
T T T

∆ = = =∫ ∫  

<Process (iii), from state 3 to state 4> adiabatic expansion from V2 to V1 

 ( )
4

3

3 3

3 3 4 3

0, 0,

5
2

T

v
T

q S

U w c dT nR T T

= ∆ =

∆ = = = −∫
  

 <Process (iv), from state 4 to state 1> constant volume cooling with a thermostat (T1) 

( )
4

4 4 1 4

0
5
2v

w

U q c T nR T T

=

∆ = = ∆ = −
 

As the same with process (ii), the entropy change is written as 



  
1 1

4 4

1
4

4

5
52 ln
2

T Trev
T T

nRdTdq TS nR
T T T

∆ = = =∫ ∫  

 
 
(4) Express T4 using T1, T2 and T3.  
 As the entropy is a state function, its change through one cycle should be 0. Thus, 

 

3 31 1
1 2 3 4

2 4 2 4

13 31
4

2 4 2

5 5 50 ln 0 ln ln 0
2 2 2

Therefore,  1,

T TT TS S S S nR nR nR
T T T T

T TTT T
T T T

 
∆ + ∆ + ∆ + ∆ = + + + = = 

 

= =

 

(5) Express the efficiency using V1 and V2.  

 ( ) ( )2 3 2 4 4 1
5 5,
2 2in outQ q nR T T Q q nR T T= = − = = −   

 Therefore, 

( )
( )

4

4 1 1 1

33 2 2

2

1
1 1 1

1
out

in

T
T TQ T T

TQ T T T
T

η
−

−
= − = − = −

− −
 

Here, for an adiabatic process (i), we have the following relation in the initial and final temperatures: 

5
2

2 1

1 2

5
2

5 ,
2

nRTdU nRdT w dV
V

T VdT dV
T V T V

δ= = = −

   
= − =   

   

 

Using this relation and 3 4

2 1

T T
T T

= , we have 

4 2
5

1 1 1 2

32 2 1

2

1
1 1 1

1

T
T T T V

TT T V
T

η
−

 
= − = − = − 

 −
 

(6) Show the efficiency of this cycle is lower than Carnot cycle. And explain the reason of it. 
 In the case of Carnot cycle of two thermostats (TH=T3, TL=T1), the efficiency becomes 
 

1

3

1 1L
carnot

H

T T
T T

η = − = −  

Here, because T3>T2 is achieved as the process (ii) is a constant-volume heating, Otto cycle’s efficiency 
is always lower than Carnot cycle efficiency. This is natural because Otto cycle include irreversible 
cycle, namely constant-V heating/cooling, where a heat transfer occurs with a finite temperature 
difference between the system and the surrounding if only two thermostats. According to a version of 
the second law, “The efficiency of a quasi-static or reversible Carnot cycle depends only on the 
temperatures of the two heat reservoirs, and is independent of the working substance. A Carnot engine 
operated in this way is the most efficient possible heat engine using those two temperatures.” and the 
related theorem, “The efficiency of a (general) cycle using 2 thermostats is less than the efficiency of 
Carnot cycle: 𝜂𝜂 ≤ 𝜂𝜂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 1 − 𝑇𝑇𝐿𝐿

𝑇𝑇𝐻𝐻
. The equal sign is achieved when the cycle is reversible.”, the 

efficiency of Otto cycle must be lower than that of Carnot cycle. 



  

[Problem-VI: 18 pt (6pt each)] We consider a reactor that can generate 750M [J] work per second (thus 750 MW 
output). The temperature of reactor is 600 K, which can be considered as the high-temperature thermostat, and the 
temperature of river, which is used as the low-temperature thermostat and to which we dispose some energy as heat, is 
300 K. Answer the following question.  

(1) Assuming this reactor uses a cycle (engine) of two thermostats, answer the largest possible efficiency of this reactor. 

The best efficiency of two-thermostats cycle is achieved for Carnot cycle and reversible cycle, which is expressed 
as follows according to the result of Problem IV. 

3001 1 0.5
600

out L
best

in H

W T
Q T

η = = − = − =  

(2) Assuming the real efficiency of this reactor is 60% of the largest possible efficiency, answer how much energy is 
released to the river as heat per second. 

 The real efficiency becomes 0.6 0.3real bestη η= × =  

In this case, to achieve Wout = 750 MW, we need to have 2500
0.3

out
in

WQ MW= = . The internal energy change by 

one cycle is 0 as the internal energy is a state function and the initial and final states are the same in a cycle.  

Thus, 

 
750 2500 0

1750
out in out out

out

Y W Q Q MW MW Q
Q MW
∆ = − + − = − + − =

=
 

(3) The flow rate of river is 165 m3/s. The density of water is 1000 kg/m3. The heat capacity of water is 4.2 kJ/kg/K. Then, 
answer what is the expected temperature increase of this river due to the release of the heat from the reactor. 

 Every second, 1750 MJ energy is disposed to the river. Every second, the water of 165x1000 kg flows in river. 

 Then, the heat absorbed by 1 kg of water is calculated as 

 [ ]
6 6

3 3

1750 10 1750 10 10.6 /
165 10 165 10

q kJ kg× ×
= = =

× ×
 

 As the heat capacity is 4.2 kJ/kg/K, the temperature increase is 10.6/4.2 = 2.53 K. 
 


