1. (10 points) Explain the "dispersion" phenomenon in the gravity-driven surface wave.
2. (20 points) Oscillation of air bubble entrained in the wake of marine vessel is a major noise source, which is important for applications such as acoustic ship detection. The flow past an oscillating small bubble (radius $a(t)$), which is assumed to be spherical, can be modeled by superposing uniform flow, a point doublet (strength μ), and a point source (or sink) (strength m), located at the origin. Find the expression for μ and m such that they denote the oscillating bubble, i.e., bubble radius is changing in time.
3. (30 points) Consider a three-dimensional potential flow generated by the combination of the freestream $\left(U_{\infty}\right)$ and a point source (strength Q) positioned at the origin. Use the polar (r, θ) coordinates. Given that the surface of the body in this flow has a stream-function value of zero, derive the equation for the surface shape in terms of r and θ. Also find the expression for the pressure at the stagnation points, if any.
4. (40 points) Consider a Schwartz-Christoffel transformation of a channel flow with a vertical plate extending part way (in z-plane) across to the upper half of the ς-plane. Let's assume that the points are to be mapped as indicated (e.g., A to a) in the figure below. The velocity far upstream in the channel is U, and the channel has a uniform height H, except at the plate, which is of height h.
(a) (10 points) Obtain the differential equation, $\mathrm{d} z / \mathrm{d} \zeta$, which defines the mapping. You don't need to integrate the equation to get the explicit form of the mapping function.
(b) (15 points) Determine the complex potential in the ς-plane, $F(\varsigma)$.
(c) (10 points) Determine the constant K in the differential equation in (a) and also a relationship between the unknown values of d and f. Use the proper boundary conditions. You may have to assign a negative value to the square root of a positive quantity to obtain the relation between d and f .

5. (30 points) Let's consider a small-amplitude plane wave is traveling along the liquid surface with velocity c with the liquid depth of h. The governing equation for velocity potential (ϕ) and associated linearized boundary conditions are as follows.

$$
\begin{aligned}
& \nabla^{2} \phi=\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=0 \\
& \frac{\partial \eta}{\partial t}(x, t)=\frac{\partial \phi}{\partial y}(x, 0, t), \frac{\partial^{2} \phi}{\partial t^{2}}(x, 0, t)+\frac{1}{\rho} \frac{\partial P(x, t)}{\partial t}+g \frac{\partial \phi}{\partial y}(x, 0, t)=0 @ y=\eta \\
& \left.\frac{\partial \phi}{\partial y}\right)_{y=-h}=\frac{\partial \phi}{\partial y}(x,-h, t)=0 @ y=-h
\end{aligned}
$$

(a) (15 points) Explain the physical meaning of each boundary conditions.
(b) (15 points) Let's assume the profile of the surface wave as $\eta(x, t)=\varepsilon \sin \frac{2 \pi}{\lambda}(x-c t)$. Then, the solution of given Laplace equation can be assumed to be the form given below. Derive the dispersion relation and find the values of dimensionless propagation speed $\left(c^{2} / g h\right)$ for shallow and deep liquids conditions, respectively. (Note: you can ignore the effect of surface tension.)

$$
\phi(x, y, t)=\cos \frac{2 \pi}{\lambda}(x-c t)\left(C_{1} \sinh \frac{2 \pi y}{\lambda}+C_{2} \cosh \frac{2 \pi y}{\lambda}\right)
$$

APPENDIX

In three-dimensional potential flow (in spherical coordinates),
stream function for a uniform flow: $\frac{1}{2} U_{\infty}^{2} r^{2} \sin ^{2} \theta$
for a source located at the origin: $\phi=-\frac{Q}{4 \pi r}, \psi=-\frac{Q}{4 \pi}(1+\cos \theta)$
for a doublet located at the origin: $\phi=\frac{\mu}{4 \pi r^{2}} \cos \theta, \psi=-\frac{\mu}{4 \pi r} \sin ^{2} \theta$

