Analog Electronic Circuits
 Department of Electrical and Computer Engineering Seoul National University

Final exam

December 21, 2020
D.K. Jeong

A sheet of one-sided, A4-size note is allowed.

Roster Number (학번):

Name:

Signature:

Problem	Max Score	Score
1	18	
2	12	
3	10	
4	20	
5	15	
6	25	
Total	100	

[1] Answer the following questions. Assume all the transistors are identical and $r_{o}=\infty$.

A. Find the oscillation frequency of the LC oscillator shown in Circuit A.
B. Determine the values of R_{S}, L_{S}, and C_{S} in terms of R_{P}, L_{P}, and C_{P} so that the impedance of Circuit B is the same as Circuit A. Use the oscillation frequency found from A. (Hint : Assume $\mathrm{R}_{\mathrm{P}} / 2>\mathrm{wL}_{\mathrm{P}}$)
C. Determine whether the LC oscillator oscillates when $\mathrm{g}_{\mathrm{m}}=1 \mathrm{mS}, \mathrm{R}_{\mathrm{s}}=1 \Omega$, and $\mathrm{L}_{\mathrm{s}}=1 \mathrm{uH}$, and $\mathrm{C}_{\mathrm{s}}=1 \mathrm{nF}$.
[2] Answer the following questions. Assume the amplifier is ideal.

A. Derive the transfer function of the loop gain.
B. Find the minimum value of R_{F} for starting oscillation. Assume $\mathrm{R}=1 \mathrm{k} \Omega, \mathrm{C}=1 \mathrm{uF}$.
[3] Draw a $V_{\text {in }}-V_{\text {out }}$ curve of the circuit below. Specify the slope, condition of $V_{\text {in }}$ or $V_{\text {out }}$ when the diode turned on. (The voltage when the diode is turned on is $V_{D, O N}$)

[4] Consider the following output stage circuit. (Assume $\mathrm{V}_{\mathrm{A}}=\infty$)

$$
V_{T}=26 \mathrm{mV}, I_{S}=1 \times 10^{-13} A, R_{L}=10 \Omega
$$

A. Find the resistor r , to limit the output current with 8 A . Assume $\mathrm{Q} 2, \mathrm{Q} 5$ is active when collector current is 1 mA and $\left|V_{c c}\right|,\left|V_{E E}\right|$ are enough big.
B. Find the minimum bias current I_{B} to deliver 80 W power on 10Ω load with sinusoidal signal. Assume $\beta=100$.
C. Find the R_{1} using the bias current I_{B} of problem B , when the Quiescent current at the output is

100 mA . (Quiescent current is the current when it is producing an output of zero, $V_{\text {out }}=0$) Assume $R_{2}=1 \mathrm{k} \Omega, \mathrm{r}=0 \Omega$, and β of Q_{1} is big enough, that is, $I_{C 1} \approx I_{E 1}$.)
D. Find the power efficiency when $V_{\text {out }}=10 \sin \omega t$ when $V_{C C}=-V_{E E}=42 \mathrm{~V}$?

Ignore the power dissipation at pre-driver and assume that each transistor carries a negligible current around $V_{\text {out }}=0$ and turns off for half of the period.
[5] Answer the following questions.

Transfer function \& Poles of the Butterworth Response

$$
\begin{aligned}
& |H(j w)|=\frac{1}{\sqrt{1+\left(\frac{\omega}{\omega_{o}}\right)^{2 n}}} \\
& p_{k}=\omega_{o} \exp \frac{j \pi}{2} \exp \left(j \frac{(2 k-1) \pi}{2 n}\right), k=1,2, \ldots, n
\end{aligned}
$$

Transfer function \& Poles of the Chebyshev Response

$$
\begin{aligned}
& \left|H_{P B}(j w)\right|=\frac{1}{\sqrt{1+\epsilon^{2} \cos ^{2}\left(n \cos ^{-1}\left(\frac{\omega}{\omega_{0}}\right)\right)}}\left|H_{S B}(j w)\right|=\frac{1}{\sqrt{1+\epsilon^{2} \cosh ^{2}\left(n \cosh ^{-1}\left(\frac{\omega}{\omega_{0}}\right)\right)}} \\
& p_{k}=-\omega_{0} \sin \frac{(2 k-1) \pi}{2 n} \sinh \left(\frac{1}{n} \sinh ^{-1} \frac{1}{\epsilon}\right)+j \omega_{0} \cos \frac{(2 k-1) \pi}{2 n} \cosh \left(\frac{1}{n} \sinh ^{-1} \frac{1}{\epsilon}\right), k=1,2, \ldots, n
\end{aligned}
$$

Useful Equations

$$
\sinh (x)=\frac{e^{x}-e^{-x}}{2}, \cosh (x)=\frac{e^{x}+e^{-x}}{2}, \sinh ^{-1}(x)=\ln \left(x+\sqrt{x^{2}+1}\right), \cosh ^{-1}(x)=\ln \left(x+\sqrt{x^{2}-1}\right)
$$

A. Determine the minimum order of each filter (Butterworth Response \& Chebyshev Response). Assume the bandwidth of Chebyshev filter is 5 MHz .
B. Using determined value of n above, get the range of the optimal natural frequency $\left(\omega_{o}\right)$ of the Butterworth filter.
[6] Answer the following questions. Assume all op-amps are ideal.

A. Calculate $Z_{X}(\mathrm{~s})$.
B. Derive the transfer function $\mathrm{H}(\mathrm{s})$.
C. Determine the sensitivity of Q to a change in $\mathrm{C} 1, S_{C 1}^{Q}$, and the sensitivity of ω_{n} to a change in $\mathrm{R}, S_{R}^{w_{n}}$.
D. Design a Chebyshev filter of the problem 4 having high Q factor based on this filter structure, 'General Impedance Converter'. Every R is 1 k ohm and you need to get the value of $\mathrm{C} 1, \mathrm{C} 2$.

