Analog Electronic Circuits
 Department of Electrical and Computer Engineering
 Seoul National University

Midterm Exam

October 26, 2020
D.K. Jeong

A sheet of one-sided, A4-size note is allowed.

Roster Number (학번):

Name:

Signature:

Problem	Max Score	Score
1	10	
2	10	
3	10	
4	10	
5	20	
6	20	
7	100	
Total	10	
2		

[1] Find the values of I_{c}. Assume that $R_{1}=1 \mathrm{k} \Omega, R_{2}=10 \mathrm{k} \Omega, R_{3}=1 \mathrm{k} \Omega, R_{4}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}, \beta=\infty$, and $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$.

[2] Find the value of I_{D}. Assume that $\left(\frac{W}{L}\right)=10, \quad \mu_{\mathrm{n}} \mathrm{Cox}_{0}=\mu_{\mathrm{p}} \mathrm{Cox}_{\mathrm{ox}}=200 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{th}}=0.5 \mathrm{~V}, \quad \lambda=0$, and $\mathrm{V}_{\mathrm{DD}}=$ 2 V .

[3] For the following circuit, answer the questions.
Assume the circuit is symmetric and all MOS transistors are in the saturation region.
(Use $\mathrm{R}_{1}=\mathrm{R}_{2}=5 \mathrm{k} \Omega, \mathrm{Rc}=20 \mathrm{k} \Omega, \mathrm{Rs}=1 \mathrm{k} \Omega, \mathrm{VdD}=5 \mathrm{~V}$, Iss $=1 \mathrm{~mA}, \mathrm{~V}_{\text {thn }}=0.4 \mathrm{~V}$,
$g_{m 1}=g_{m 2}=1 \mathrm{~mA} / \mathrm{V}$, neglect the channel legnth modulation. $\mathrm{M}_{1}, \mathrm{M} 2, \mathrm{M}_{3}$ and M 4 are ideally identical. The Vin is the small signal with common mode voltage(Vin,см=2V).)

A. Find the VB with the widest dynamic range of output.
B. Derive the expression of small-signal differential voltage gain from Vin to Vout. Consider the channel length modulation. There is no need to find a value.
[4] Find the small signal gain $A_{v}\left(=\frac{V_{\text {out }}}{V_{\text {in }}}\right)$. Assume that all transistors have the same $\left(\frac{W}{L}\right)$ of $20, \mu_{\mathrm{n}} \mathrm{Cox}=$ $200 \mu \mathrm{~A} / \mathrm{V}^{2}, \quad \mu_{\mathrm{p}} \mathrm{Cox}^{2}=100 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{th}}=0.5 \mathrm{~V}, \quad \lambda_{\mathrm{n}}=0.01 \mathrm{~V}^{-1}, \quad \lambda_{\mathrm{P}}=0.02 \mathrm{~V}^{-1}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$, and $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$. Also assume that all MOS transistors are in the saturation region.

[5] For the following active inductor circuit, answer the questions.

A. Find L_{eq} of the active inductor.
B. Find the frequency range where the active inductor becomes purely inductive.
C. Find the transfer function of the above circuit.
[6] For the following circuit, find the transfer function $\mathrm{H}(\mathrm{s})$ of the circuit and draw a Bode plot of $\mathrm{H}(\mathrm{s})$. Assume that $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=1 \mathrm{k} \Omega, \mathrm{R}_{4}=\mathrm{R}_{5}=100 \mathrm{k} \Omega, \mathrm{R}_{6}=2.5 \mathrm{k} \Omega, \mathrm{R}_{7}=1 \mathrm{k} \Omega, \mathrm{C}_{1}=2 \mathrm{pF}, \mathrm{C}_{2}=4 \mathrm{pF}, \mathrm{C}_{3}=4 \mathrm{pF}, \mathrm{g}_{\mathrm{m} 1}=2 \mathrm{mS}$, $\mathrm{g}_{\mathrm{m} 2}=4 \mathrm{mS}$.

[7] Fill in the table. Assume that $\mathbf{g}_{\mathbf{m}}=\infty$.

Fig A

Fig B

Fig C

Fig D

	Fig A	Fig B	Fig C	Fig D
Feedback Topology	Voltage to Voltage			
Type of Amplifier				Current Amplifier
Open-loop Gain	∞	∞		
Feedback Factor	$\frac{R_{2}}{R_{1}+R_{2}}$			
$\mathrm{R}_{\text {in-open }}$			0	0
$\mathrm{R}_{\text {in-closed }}$	∞		0	
$\mathrm{R}_{\text {out-open }}$		R_{2}		
$\mathrm{R}_{\text {out-closed }}$	0		0	

\{End of Midterm \}

