Analog Electronic Circuits Department of Electrical and Computer Engineering Seoul National University

Midterm Exam

October 26, 2020

D.K. Jeong

A sheet of one-sided, A4-size note is allowed.

Roster Number (학번):

Name:

Signature:

Problem	Max Score	Score
1	10	
2	10	
3	10	
4	10	
5	20	
6	20	
7	20	
Total	100	

[1] Find the values of I_{c.} Assume that $R_1 = 1k\Omega$, $R_2 = 10k\Omega$, $R_3 = 1k\Omega$, $R_4 = 10k\Omega$, $V_{BE} = 0.7V$, $\beta = \infty$, and $V_{DD} = 10V$.

[2] Find the value of I_D. Assume that $\left(\frac{W}{L}\right) = 10$, $\mu_n C_{OX} = \mu_p C_{OX} = 200 \,\mu \text{ A/V}^2$, V_{th}=0.5V, λ =0, and V_{DD} = 2V.

[3] For the following circuit, answer the questions.

Assume the circuit is symmetric and all MOS transistors are in the saturation region.

(Use $R_1=R_2=5k\Omega$, $R_c=20k\Omega$, $R_s=1k\Omega$, $V_{DD}=5V$, Iss = 1mA, $V_{thn} = 0.4V$,

 $g_{m1} = g_{m2} = 1$ mA/V, neglect the channel legnth modulation. M1,M2,M3 and M4 are ideally identical.

The VIN is the small signal with common mode voltage(VIN,CM=2V).)

A. Find the VB with the widest dynamic range of output.

B. Derive the expression of small-signal differential voltage gain from Vin to Vout.
Consider the channel length modulation. There is no need to find a value.

[4] Find the small signal gain $A_v (= \frac{V_{out}}{V_{in}})$. Assume that all transistors have the same $(\frac{W}{L})$ of 20, $\mu_n C_{OX} = 200 \ \mu \text{ A/V}^2$, $\mu_p C_{OX} = 100 \ \mu \text{ A/V}^2$, $V_{th} = 0.5 \text{ V}$, $\lambda_n = 0.01 \text{ V}^{-1}$, $\lambda_P = 0.02 \text{ V}^{-1}$, $R_L = 2k\Omega$, and $V_{DD} = 5 \text{ V}$. Also assume that all MOS transistors are in the <u>saturation</u> region.

[5] For the following active inductor circuit, answer the questions.

A. Find L_{eq} of the active inductor.

B. Find the frequency range where the active inductor becomes purely inductive.

C. Find the transfer function of the above circuit.

[6] For the following circuit, find the transfer function H(s) of the circuit and draw a Bode plot of H(s). Assume that $R_1=R_2=R_3=1k\Omega$, $R_4=R_5=100k\Omega$, $R_6=2.5k\Omega$, $R_7=1k\Omega$, $C_1=2pF$, $C_2=4pF$, $C_3=4pF$, $g_{m1}=2mS$, $g_{m2}=4mS$.

[7] Fill in the table. Assume that $\underline{\mathbf{g}}_{\mathbf{m}} = \infty$.

Fig A

	Fig A	Fig B	Fig C	Fig D
Feedback Topology	Voltage to Voltage			
Type of Amplifier				Current Amplifier
Open-loop Gain	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00		
Feedback Factor	$\frac{R_2}{R_1 + R_2}$			
R _{in-open}			0	0
R _{in-closed}	œ		0	
R _{out-open}		R ₂		
Rout-closed	0		0	