Midterm Examination
Subject: Optimal Design
Date: 2008. 04. 17

1. Consider a matrix $\underset{\sim}{\mathbf{A}}=\left[a_{i j}\right]={\underset{\sim}{\mathbf{A}}}^{\mathrm{T}}$.
A. Write down the definition of Positive-Definiteness for $\underset{\sim}{\mathbf{A}}$ [5pts.]
B. Check if $\underset{\sim}{\mathbf{A}}=\left[\begin{array}{ccc}6 & 2 & -2 \\ 2 & 5 & 0 \\ -2 & 0 & 7\end{array}\right]$ is Positive-Definite using eigenvalues of $\underset{\sim}{\mathbf{A}}$ [5pts.]
C. Check if $\underset{\sim}{\mathbf{A}}=\left[\begin{array}{lll}5 & 3 & 2 \\ 3 & 5 & 2 \\ 2 & 2 & 6\end{array}\right]$ is Positive-Definite by Sylvester's test. [5pts.]
2. Prove if $f \in C^{2}$ and $f=$ convex $\leftrightarrow f^{\prime \prime}(x) \geq 0$ for $x \in S$ (S: convex set) [10pts.]
3. It is known that in the Golden Section Method, there exists a relation for interval I_{n} such that $I_{n+1}=\tau I_{n}$.
A. Derive the value τ. [10pts.]
B. What is the advantage using the Golden Section Method compared with the interval halving method? [10pts.]
4. In the Conjugate Gradient Method, the variable X is updated in the conjugate direction, $\mathbf{d}^{\mathbf{k}+1}$. In order to obtain $\mathbf{d}^{\mathbf{k}+1}, \beta^{\mathbf{k}}$ is derived as:

$$
\begin{equation*}
\beta^{k}=\frac{\left(\mathbf{g}^{k+1}\right)^{\mathrm{T}} \underset{\sim}{\mathbf{A}}\left(\mathbf{d}^{\mathrm{k}}\right)}{\left(\mathbf{d}^{\mathbf{k}}\right)^{\mathrm{T}} \underset{\sim}{\mathbf{A}}\left(\mathbf{d}^{\mathbf{k}}\right)} \tag{a}
\end{equation*}
$$

However, when expression (a) is extended for Non-quadratic functions, β^{k} should be replaced by:

$$
\begin{equation*}
\beta^{\mathbf{k}}=\frac{\left(\mathbf{g}^{\mathbf{k}+1}\right)^{\mathrm{T}} \mathbf{g}^{\mathbf{k}}}{\left(\mathbf{g}^{\mathbf{k}}\right)^{\mathrm{T}} \mathbf{g}^{\mathbf{k}}} \tag{b}
\end{equation*}
$$

When modifying (a) into (b), equations (c)-(e) below will be used:

$$
\begin{align*}
& \left(\mathbf{g}^{\mathbf{k}+1}\right)^{\mathbf{T}} \mathbf{d}^{\mathbf{k}}=0 \tag{c}\\
& \left(\mathbf{d}^{\mathbf{k}}\right)^{\mathbf{T}} \mathbf{g}^{\mathbf{k}}=-\left(\mathbf{g}^{\mathbf{k}}\right)^{\mathbf{T}} \mathbf{g}^{\mathbf{k}} \tag{d}\\
& \left(\mathbf{g}^{\mathbf{k}+1}\right)^{\mathbf{T}} \mathbf{g}^{\mathbf{k}}=0 \tag{e}
\end{align*}
$$

A. Prove equation (d). [10pts.]
B. Using equations (a), (c)-(e), derive equation (b). (equations (c) and (e) need not be proven.) [10pts.]
5. Consider the following problem:

$$
\begin{equation*}
\min f\left(x_{1}, x_{2}\right)=\frac{1}{4} x_{1}^{2}-2 x_{2}+x_{2}^{2}+1 \tag{f}
\end{equation*}
$$

We wish to solve (f) with $\mathbf{x}_{o}=[4,0]$ using the Steepest Descent Method (SDM) and the Conjugate Gradient Method (CGM).
A. Perform 2 iterations using the Steepest Descent Method (SDM). [10pts.] (You can use any method for the 1-D search, graphical or analytical ones.)
B. Perform 2 iterations using Conjugate Gradient Method (CGM). [10pts.] (You can use any method for the 1-D search, graphical or analytical ones.)
C. Solve the minimization problem (f) again analytically. Show that the solution is a true minimum. [5pts.]
D. Compare the results of A-C. If there exists any difference, explain why.
E. Is there any way to improve the convergence of SDM in this problem? If so, explain it and re-write problem (f). (You do not have to perform any numerical iteration.) [5pts.]

