School of Mech \& Aero Eng Seoul National University

Eng Probability
April 17, 2008

MIDTERM

- Do not open exam until told to do so.
- 'How you arrived at your answer' is much more important than the answer itself. Read the following problems carefully, and make sure you show your work step by step.
- You can attach extra pages if necessary. Please use a separate sheet for each problem.
- Ask questions if you don't understand what you are being asked, and GOOD LUCK !

Student ID: \qquad
Name: \qquad

1	$/ 10$
2	$/ 15$
3	$/ 10$
4	$/ 15$
5	$/ 10$
6	$/ 15$
7	$/ 15$
8	$/ 100$
Total	

1. $[5+5=10 \mathrm{pts}]$

(a) You want to find someone with the same birthday as yours (out of 365 days per year). What is the least number of people you need to ask to have a 50% chance of finding at least one matches?
(b) A girl and her friend are supposed to meet between 1 and 2 PM. Each comes at a random moment between 1 and 2 PM and waits for exactly 10 minutes. The meeting is successful only when the other person arrives within the 10 -minute interval. What is the probability that the two people successfully meet?
2. [15 pts] A biased coin is tossed repeatedly. Each toss is independent with a probability p of a head. Show that the probability that there is a run of r heads in a row before there is a run of s tails is

$$
\frac{p^{r-1}\left(1-q^{s}\right)}{p^{r-1}+q^{s-1}-p^{r-1} q^{s-1}},
$$

where r and s are positive integers.
3. [5+5=10 pts] Let X and Y be independent random variables with common distribution function F and density function f.
(a) Compute the distribution function and density function of $V=\max (X, Y)$.
(b) Compute the distribution function and density function of $U=\min (X, Y)$.
4. [15 pts]Let X have the normal distribution $N(0,1)$.
(a) Compute the density function of $Y=e^{X}$.
(b) Let $Z=\sigma(\mu+X)$. Show that $E[(Z-\mu) g(Z)]=\sigma^{2} E\left[g^{\prime}(Z)\right]$
5. [10 pts] A point (X, Y) is chosen uniformly at random in the unit circle. find the joint density function of $R^{2}=X^{2}+Y^{2}$ and X.
6. [15 pts] A random number N of dice is thrown. Let $P(N=i)=2^{-i}, i \geq$ 1 , and S denote the sum of the scores. Find the probability that
(a) $\mathrm{S}=4$ given $\mathrm{N}=$ even.
(b) the largest number shown by any die is less than or equal to m, where S is unknown.
(c) the largest number shown by any die is equal to m, where S is unknown.
7. [15 pts]

Let X and Y have joint density function

$$
f(x, y)=\frac{1}{x}, \quad 0 \leq y \leq x \leq 1
$$

(a) compute the density functions of X.
(b) compute the density function of $X+Y$.
8. [10 pts] If the density of X is given by

$$
f(x)= \begin{cases}a x+b x^{2} & 1>x>0 \\ 0 & \text { else }\end{cases}
$$

and $E[X]=0.7$, compute $\operatorname{var}(X)$ and $P(X>0.9)$.

