School of Mech \& Aero Eng Seoul National University

Eng Probability
April 17, 2008

MIDTERM

- Do not open exam until told to do so.
- 'How you arrived at your answer' is much more important than the answer itself. Read the following problems carefully, and make sure you show your work step by step.
- You can attach extra pages if necessary. Please use a separate sheet for each problem.
- Ask questions if you don't understand what you are being asked, and GOOD LUCK !

Student ID: \qquad
Name: \qquad

1	$/ 10$
2	$/ 15$
3	$/ 10$
4	$/ 15$
5	$/ 10$
6	$/ 20$
7	$/ 15$
8	$/ 100$
Total	

1. $[5+5=10 \mathrm{pts}]$

(a) You want to find someone with the same birthday as yours (out of 365 days per year). What is the least number of people you need to ask to have a 50% chance of finding at least one matches?

Sol. $P=1-(364 / 365)^{n} \geq 1 / 2$
$\therefore n \geq \frac{\log 2}{\log (365 / 364)}$
(b) A girl and her friend are supposed to meet between 1 and 2 PM. Each comes at a random moment between 1 and 2 PM and waits for exactly 10 minutes. The meeting is successful only when the other person arrives within the 10 -minute interval. What is the probability that the two people successfully meet?

Sol.

$$
P(|X-Y| \leq 1 / 6)=1-(5 / 6)^{2}=11 / 36 .
$$

2. [15 pts] A biased coin is tossed repeatedly. Each toss is independent with a probability p of a head. Show that the probability that there is a run of r heads in a row before there is a run of s tails is

$$
\frac{p^{r-1}\left(1-q^{s}\right)}{p^{r-1}+q^{s-1}-p^{r-1} q^{s-1}},
$$

where r and s are positive integers.

Sol.

A: r heads before s tails
B: first toss is a head
C: first s tosses are tails
Then

$$
\begin{aligned}
P\left(A \mid B^{c}\right) & =P\left(A \mid B^{c} \cap C\right) P\left(C \mid B^{c}\right)+P\left(A \mid B^{c} \cap C^{c}\right) P\left(C^{c} \mid B^{c}\right) \\
& =0+P(A \mid B)\left(1-q^{s-1}\right)
\end{aligned}
$$

where $q=1-p$. Similarly,

$$
P(A \mid B)=p^{r-1}+P\left(A \mid B^{c}\right)\left(1-p^{r-1}\right) .
$$

Solve for $P(A \mid B)$ and $P\left(A \mid B^{c}\right)$, and use

$$
\begin{aligned}
P(A) & =P(A \mid B) p+P\left(A \mid B^{c}\right) q \\
& =\text { Ans }
\end{aligned}
$$

3. [5+5=10 pts] Let X and Y be independent random variables with common distribution function F and density function f.
(a) Compute the distribution function and density function of $V=\max (X, Y)$.
(b) Compute the distribution function and density function of $U=\min (X, Y)$.

Sol.

$$
\begin{gathered}
P(V \leq v)=P(X \leq v, Y \leq v)=P(X \leq v) P(Y \leq v)=F(v)^{2} \\
f_{V}(v)=2 F(v) f(v) \\
P(U \leq u)=1-P(U>u)=1-P(X \leq u) P(Y \leq u)=1-[1-F(u)]^{2} \\
f_{U}(u)=2 f(u)(1-F(u))
\end{gathered}
$$

4. $[7+8=15 \mathrm{pts}]$ Let X have the normal distribution $N(0,1)$.
(a) Compute the density function of $Y=e^{X}$.
(b) Let $Z=\mu+\sigma X$. Show that $E[(Z-\mu) g(Z)]=\sigma^{2} E\left[g^{\prime}(Z)\right]$ for some function g.

Sol.

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi}} \exp ^{-x^{2} / 2}
$$

(a)

$$
\begin{gathered}
P(Y \leq y)=P(X \leq \log y) \\
f_{Y}(y)=\frac{1}{y} f_{X}(\log y)=\frac{1}{y \sqrt{2 \pi}} e^{-\frac{1}{2}(\log y)^{2}}
\end{gathered}
$$

(b)

$$
\begin{aligned}
P(Z \leq z) & =P\left(X \leq \frac{z-\mu}{\sigma}\right) \\
\therefore f_{Z}(z) & =\frac{1}{\sigma} f_{X}\left(\frac{z-\mu}{\sigma}\right) \\
E[(Z-\mu) g(Z)] & =\int_{-\infty}^{\infty}(z-\mu) g(z) f_{Z}(z) d z \\
& =\int_{-\infty}^{\infty} g(z)\left\{\frac{z-\mu}{\sigma} f_{X}\left(\frac{z-\mu}{\sigma}\right)\right\} d z \\
& =-\left[g(z) \sigma f_{X}\left(\frac{z-\mu}{\sigma}\right)\right]_{-\infty}^{\infty}+\int_{-\infty}^{\infty} g^{\prime}(z) \sigma f_{X}\left(\frac{z-\mu}{\sigma}\right) d z \\
& =\sigma^{2} \int_{-\infty}^{\infty} g^{\prime}(z) f_{Z}(z) d z \\
& =R H S .
\end{aligned}
$$

5. [10 pts] A point (X, Y) is chosen uniformly at random in the unit circle. find the joint density function of $R^{2}=X^{2}+Y^{2}$ and X.

Sol.

$$
\begin{gathered}
F(r, x)=P(R \leq r, X \leq x)=\frac{2}{\pi} \int_{-r}^{x} \sqrt{r^{2}-u^{2}} d u \\
f(r, x)=\frac{2 r}{\pi \sqrt{r^{2}-u^{2}}}|x|<r<1
\end{gathered}
$$

6. [15 pts] A random number N of dice is thrown. Let $P(N=i)=2^{-i}, i \geq$ 1 , and S denote the sum of the scores.find the probability that
(a) $\mathrm{S}=4$ given $\mathrm{N}=$ even.
(b) the largest number shown by any die is less than or equal to m, where S is unknown.
(c) the largest number shown by any die is equal to m, where S is unknown.

Sol.

(a)

$$
\begin{aligned}
P(S=4 \mid \text { Neven }) & =\frac{P(S=4 \mid N=2) \frac{1}{4}+P(S=4 \mid N=4) \frac{1}{16}}{P(N \text { even })} \\
& =\frac{\frac{1}{12} \frac{1}{4}+\frac{1}{6^{4}} \frac{1}{16}}{\frac{1}{4}+\frac{1}{16}+\cdots}=\frac{4^{2} 3^{3}+1}{4^{4} 3^{3}}
\end{aligned}
$$

(b) M : the largest number shown by any die.

$$
P(M \leq m)=\sum_{j=1}^{\infty} P(M \leq m \mid N=j) 2^{-j}=\frac{r}{12}\left(1-\frac{r}{12}\right)^{-1}=\frac{r}{r-12}
$$

(c)

$$
P(M=m)=P(M \leq m)-P(M \leq m-1)
$$

7. [15 pts] Let X and Y have joint density function

$$
f(x, y)=\frac{1}{x}, \quad 0 \leq y \leq x \leq 1
$$

(a) compute the density functions of X.
(b) compute the density function of $X+Y$.

Sol.
(a) $f_{X}(x)=\int_{0}^{x} \frac{1}{x} d y=1$.
(b) $f_{X+Y}(z)=\int_{A} \frac{1}{x} d x$, where $A=\{x: 0 \leq z-x \leq x \leq 1\}=[z / 2, \min (z, 1)]$.

$$
f_{X+Y}(z)= \begin{cases}\log 2 & 0 \leq z \leq 1 \\ \log (2 / z) & 1 \leq z \leq 2 \\ 0 & \text { else }\end{cases}
$$

8. [10 pts] If the density of X is given by

$$
f(x)= \begin{cases}a x+b x^{2} & 1>x>0 \\ 0 & \text { else }\end{cases}
$$

and $E[X]=0.7$, compute $\operatorname{var}(X)$ and $P(X>0.9)$.
Sol.

$$
\begin{gathered}
1=\int_{-\infty}^{\infty} f(x) d x=a / 2+b / 3 \\
.7=\int_{-\infty}^{\infty} x f(x) d x=a / 3+b / 4 \\
\therefore a=b=1.2
\end{gathered}
$$

and

$$
\begin{gathered}
\operatorname{var}(X)=\int_{-\infty}^{\infty} x^{2} f(x) d x-(E[X])^{2}=0.05 \\
P(X>0.9)=\int_{.9}^{1} a x+b x^{2} d x=.6\left(1-.9^{2}\right)+.4\left(1-.9^{3}\right)
\end{gathered}
$$

