School of Mech \& Aero Eng Seoul National University

Eng Probability
June 07, 2008

FINAL

- 'How you arrived at your answer' is much more important than the answer itself. Read the following problems carefully, and make sure you show your work step by step.
- You can attach extra pages if necessary. Please use a separate sheet for each problem.
- In case you have forgotten, integration by parts:

$$
\int_{a}^{b} f(x) g^{\prime}(x) d x=[f(x) g(x)]_{a}^{b}-\int_{a}^{b} f^{\prime}(x) g(x) d x
$$

Density function of a standard normal random variable:

$$
f(z)=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2}
$$

Thank you for your hard work, and GOOD LUCK !

Student ID: \qquad
Name: \qquad

1	$/ 10$
2	$/ 20$
3	$/ 40$
4	$/ 15$
5	$/ 15$
EXTRA	$+\alpha$
Total	$/ 100$

1. $[10 \mathrm{pts}=5+5]$

(a) A record claims that the life expectancy of patients with a particular disease has a mean of 54 months and a standard deviation of 3 months. A hospital tests 50 patients with that disease. Assuming the manufacturer's claims are true, what is the probability that the test finds a mean lifetime of longer than 60 months?
(b) Is the following statement true ? Why?
(1) If the two random variables are independent, then they are not correlated.
(2) $E(Y g(X) \mid X)=E(g(X)) E(Y \mid X)$ for any suitable function g.
2. $[20 \mathrm{pts}=6+6+8]$ Let X and Y have the joint density

$$
f(x, y)=c x(y-x) e^{-y}, \quad 0 \leq x \leq y<\infty
$$

(a) Find the value of c.
(b) Show that

$$
\begin{aligned}
f_{X \mid Y}(x \mid y)=6 x(y-x) y^{-3}, & 0 \leq x \leq y \\
f_{Y \mid X}(y \mid x)=(y-x) e^{x-y}, & 0 \leq x \leq y<\infty
\end{aligned}
$$

(c) Compute $E(X \mid Y)$ and $E(Y \mid X)$.
3. [40 pts=7+7+7+4+5+10] Let Z_{1}, Z_{2} be independent normal random variables with mean 0 and variance 1 .
(a) Let $X_{1}=Z_{1}, X_{2}=\rho Z_{1}+\sqrt{1-\rho^{2}} Z_{2}$, where $|\rho|<1$. Show that

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\frac{1}{2 \pi \sqrt{1-\rho^{2}}} \exp \left[-\frac{x_{1}^{2}-2 \rho x_{1} x_{2}+x_{2}^{2}}{2\left(1-\rho^{2}\right)}\right]
$$

(b) Compute $E\left(X_{2}\right), \operatorname{var}\left(X_{2}\right), E\left(X_{1} X_{2}\right)$, and correlation of X_{1} and X_{2}.
(c) Let $Y_{1}=X_{1}+X_{2}$ and $Y_{2}=X_{1}-X_{2}$. Find the joint density function $f_{Y_{1}, Y_{2}}$ of Y_{1} and Y_{2}.
(d) Are Y_{1} and Y_{2} independent? Why?
(e) Compute the marginal density functions of Y_{1} and Y_{2}. What kind of distributions do they have?
(f) Show that

$$
P\left(X_{1}>0, X_{2}>0\right)=\frac{1}{4}+\frac{1}{2 \pi} \sin ^{-1} \rho .
$$

(Hint: it might be easier to represent the above value in terms of Z_{1} and Z_{2}.
4. $[15 \mathrm{pts}=7+8]$
(a) Describe the property of the moment generating function of a random variable.
(b) Describe why $\xi(t)=\left(1+t^{4}\right)^{-1}$ cannot be a moment generating function.
5. [15 pts=8+7] Let X, Y, and Z be independent and uniformly distributed on $[0,1]$.
(a) Compute the joint density function of $X Y$ and Z^{2}.
(b) Show that $P\left(X Y<Z^{2}\right)=5 / 9$.

EXTRA. Please write down the names of your classmates taking this course (as many as you know).

