Name:

Problem	1	2	3	4	5	Total
Points						

Final Exam
(June 11)

1. Experimental measurements of the convection heat transfer coefficient for a square bar in cross flow yielded the following values (length of one side $L=0.5 \mathrm{~m}$):
$\bar{h}_{1}=50 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}$ when $V_{1}=20 \mathrm{~m} / \mathrm{s}, \quad \bar{h}_{2}=40 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}$ when $V_{2}=15 \mathrm{~m} / \mathrm{s}$

Assume that the functional form of the Nusselt number is $\mathrm{Nu}=C \operatorname{Re}^{m} \operatorname{Pr}^{n}$, where C, m, n are constants (5 pts each, 20 pts in total).
(a) What is the value of m ?
(b) What will be the convection heat transfer coefficient for a similar bar with $L=1 \mathrm{~m}$ when $V=15 \mathrm{~m} / \mathrm{s}$?
(c) What will be the convection heat transfer coefficient for a similar bar with $L=1 \mathrm{~m}$ when $V=30 \mathrm{~m} / \mathrm{s}$?
(d) Would your results be the same if the diagonal of the bar, rather than its length of one side, were used as the characteristic length?

Solution

(a)

$$
\frac{\bar{h} L}{k}=C\left(\frac{V L}{v}\right)^{m} \operatorname{Pr}^{n}
$$

$$
\frac{\bar{h}_{1}}{\bar{h}_{2}}=\left(\frac{V_{1}}{V_{2}}\right)^{m} \rightarrow \frac{50}{40}=\left(\frac{20}{15}\right)^{m} \rightarrow m=\frac{\ln (5 / 4)}{\ln (4 / 3)}=0.776
$$

(b)

$$
\frac{\bar{h}_{3} L_{3}}{\bar{h}_{1} L_{1}}=\left(\frac{V_{3} L_{3}}{V_{1} L_{1}}\right)^{m} \rightarrow \frac{\overline{h_{3}}}{50 \times 0.5}=\left(\frac{15}{20 \times 0.5}\right)^{0.776} \rightarrow \bar{h}_{3}=34.2 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}
$$

(c)

$$
\frac{\bar{h}_{4} L_{4}}{\bar{h}_{1} L_{1}}=\left(\frac{V_{4} L_{4}}{V_{1} L_{1}}\right)^{m} \rightarrow \frac{\bar{h}_{4}}{50 \times 0.5}=\left(\frac{30}{20 \times 0.5}\right)^{0.776} \rightarrow \bar{h}_{4}=58.6 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}
$$

(d) If the diagonal of the bar is chosen as the characteristic length, C would change while m and n remain the same.
2. Consider weather conditions for which the prevailing wind blows past the penthouse tower on a tall building. The tower length in the wind direction is 10 m and there are 10 window panels. For simplicity, it is assumed that material properties of air at a film temperature of 300 K can be used: $v=16 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}, k=26 \times 10^{-3} \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, \operatorname{Pr}=0.7$. The critical Reynolds number for turbulent transition is $\mathrm{Re}_{x, c}=5 \times 10^{5}$. (20 pts)

(a) Predict at which window the air flow transits from laminar to turbulent when the wind speed is $u_{\infty}=5 \mathrm{~m} / \mathrm{s}$.
(b) Calculate the average convection coefficient for the first and third window panels.

Solution
(a) $\operatorname{Re}_{x, c}=\frac{u_{\infty} X}{v}=\frac{5 x}{16 \times 10^{-6}}=5 \times 10^{5} \rightarrow x=1.6 \mathrm{~m}$

Thus, transition occurs at the second window.
(b)

1) first window: laminar $\quad \overline{\mathrm{Nu}}_{x}=0.664 \operatorname{Re}_{x}^{1 / 2} \operatorname{Pr}^{1 / 3}$

$$
\bar{h}_{1}=0.664 \frac{k}{x_{1}}\left(\frac{u_{\infty} x_{1}}{v}\right)^{1 / 2} \operatorname{Pr}^{1 / 3}=0.664 \times \frac{26 \times 10^{-3}}{1}\left(\frac{5 \times 1}{16 \times 10^{-6}}\right)^{1 / 2}(0.7)^{1 / 3}=8.57 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}
$$

2) third window: turbulent, local Nusselt number: $\mathrm{Nu}_{x}=0.0296 \operatorname{Re}_{x}^{4 / 5} \operatorname{Pr}^{1 / 3}$
$h_{3}=0.0296 \frac{k}{x}\left(\frac{u_{\infty} x}{v}\right)^{4 / 5} \operatorname{Pr}^{1 / 3}=0.0296 k\left(\frac{u_{\infty}}{v}\right)^{4 / 5} \operatorname{Pr}^{1 / 3} x^{-1 / 5}$
$\bar{h}_{3}=0.0296 k\left(\frac{u_{\infty}}{v}\right)^{4 / 5} \operatorname{Pr}^{1 / 3} \int_{2}^{3} x^{-1 / 5} d x$
$=0.0296 \times 26 \times 10^{-3} \times\left(\frac{5}{16 \times 10^{-6}}\right)^{4 / 5}(0.7)^{1 / 3} \frac{5}{4}\left(3^{0.8}-2^{0.8}\right)=14.2 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}$
3. For a liquid metal flow between two parallel plates (two-dimensional channel) as shown below, the velocity and temperature profiles at a particular axial location may be approximated as being uniform and parabolic, respectively. That is, $u(x)=C_{1}$ and $T(x)-T_{s}=C_{2}\left\{1-(x / H)^{2}\right\}$, where C_{1} and C_{2} are constants and H is the half height of the channel. Determine the corresponding value of the mean (or bulk) temperature T_{m} and the Nusselt number $\mathrm{Nu}_{H}(=h H / k)$ at this axial position. (20 pts)

Solution
$\rho c_{p} H u T_{m}=\int_{0}^{H} \rho c_{p} u T d x$
$\rightarrow T_{m}=\frac{1}{H} \int_{0}^{H}\left[T_{s}+C_{2}\left\{1-\left(\frac{x}{H}\right)^{2}\right\}\right] d x=\frac{1}{H}\left[T_{s} x+C_{2}\left(x-\frac{1}{3} \frac{x^{3}}{H^{2}}\right)\right]_{0}^{H}=T_{s}+\frac{2}{3} C_{2}$
$\left.\left.q^{\prime \prime}=k \frac{d T}{d x}\right)_{x=H}=h\left(T_{s}-T_{m}\right), \quad \frac{d T}{d x}=-2 C_{2} \frac{x}{H^{2}}, \quad k \frac{d T}{d x}\right)_{x=H}=-\frac{2 k C_{2}}{H}$
$-\frac{2 k C_{2}}{H}=h\left(T_{s}-T_{s}-\frac{2}{3} C_{2}\right)=-\frac{2}{3} C_{2} h \rightarrow h=3 \frac{k}{H} \rightarrow \mathrm{Nu}_{H}=\frac{h H}{k}=3$
4. The feedwater heater for a boiler supplies $10,000 \mathrm{~kg} / \mathrm{h}$ of water at $65^{\circ} \mathrm{C}$. The feedwater has an inlet temperature of $20^{\circ} \mathrm{C}$ and is to be heated in a single-shell, two-tube pass heat exchanger by condensing steam at 1.30 bars. The overall heat transfer coefficient is 2000 $\mathrm{W} / \mathrm{m}^{2} \cdot \mathrm{~K}$. Using both the LMTD and NTU methods, determine the required heat transfer area. What is the steam condensation rate? Assume correction factor $F=1$.

Properties: Steam (1.3 bar, saturated): $T_{h}=380.3 \mathrm{~K}, \mathrm{~h}_{f g}=2238 \times 10^{3} \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$; Water $(T=$ $316 \mathrm{~K}): c_{p}=4179 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}, \mu=725 \times 10^{-6} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}, k=0.625 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, \operatorname{Pr}=4.85$.
Note that some properties are necessary, while some are not.

For single-shell and two tube passes,

$$
\mathrm{NTU}=-\left(1+C_{r}^{2}\right)^{-1 / 2} \ln \left(\frac{E-1}{E+1}\right), \quad E=\frac{2 / \varepsilon-\left(1+C_{r}\right)}{\left(1+C_{r}^{2}\right)^{1 / 2}} \quad\left(C_{r}=C_{\min } / C_{\max }\right)
$$

Solution

1) LMTD method

$$
q=\dot{m}_{c} c_{p, c}\left(T_{c, o}-T_{c, i}\right)=U A \Delta T_{\mathrm{lm}}
$$

$$
\begin{aligned}
& A=\frac{\dot{m}_{c} c_{p, c}\left(T_{c, o}-T_{c, i}\right)}{U \Delta T_{\mathrm{lm}}}=\frac{\dot{m}_{c} c_{p, c}\left(T_{c, o}-T_{c, i}\right) \ln \frac{T_{h, i}-T_{c, o}}{T_{h, o}-T_{c, i}}}{U\left[\left(T_{h, i}-T_{c, o}\right)-\left(T_{h, o}-T_{c, i}\right)\right]} \\
& =\frac{10000 \times 4179 \times(65-20) \ln \frac{107-65}{107-20}}{3600 \times 2000 \times[(107-65)-(107-20)]}=4.23 \mathrm{~m}^{2}
\end{aligned}
$$

2) ε-NTU method
$\mathrm{NTU}=\frac{U A}{C_{\text {min }}} \rightarrow A=\frac{\mathrm{NTU} \times C_{\text {min }}}{U}$
$\varepsilon=\frac{q}{q_{\text {max }}}=\frac{\dot{m}_{c} c_{p, c}\left(T_{c, o}-T_{c, i}\right)}{C_{\text {min }}\left(T_{h, i}-T_{c, i}\right)}=\frac{T_{c, o}-T_{c, i}}{T_{h, i}-T_{c, i}}=\frac{65-20}{107-20}=0.517$
$C_{r}=\frac{C_{\text {min }}}{C_{\text {max }}}=0$
$E=\frac{2 / \varepsilon-\left(1+C_{r}\right)}{\left(1+C_{r}^{2}\right)^{1 / 2}}=\frac{2}{0.517}-1=2.87$
$\mathrm{NTU}=-\left(1+C_{r}^{2}\right)^{-1 / 2} \ln \left(\frac{E-1}{E+1}\right)=-\ln \frac{2.87-1}{2.87+1}=0.727$
$A=\frac{\mathrm{NTU} \times C_{\text {min }}}{U}=\frac{0.727 \times 10000 \times 4179}{2000 \times 3600}=4.22 \mathrm{~m}^{2}$
3) steam condensation rate
$q=\dot{m}_{c} c_{p, c}\left(T_{c, o}-T_{c, i}\right)=\dot{m}_{h} h_{f g}$
$\dot{m}_{h}=\frac{\dot{m}_{c} c_{p, c}\left(T_{c, o}-T_{c, i}\right)}{h_{f g}}=\frac{10000 \times 4179 \times(65-20)}{2238 \times 10^{3}}=840 \mathrm{~kg} / \mathrm{h}$
5. A concentric tube heat exchanger for cooling lubricating oil is comprised of a thin-walled inner tube of $20-\mathrm{mm}$ diameter carrying water and an outer tube of $40-\mathrm{mm}$ diameter carrying the oil. The exchanger operates in counterflow with an overall heat transfer coefficient of $50 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}$. The inlet temperatures are $100^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$ for oil and water, respectively and the flow rates are the same at $0.1 \mathrm{~kg} / \mathrm{s}$ for both fluids. The material properties are given below (20 pts)

Properties	Water	Oil
$\rho\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	1000	800
$c_{p}(\mathrm{~J} / \mathrm{kg} \cdot \mathrm{K})$	4200	1900
$v\left(\mathrm{~m}^{2} / \mathrm{s}\right)$	7×10^{-7}	1×10^{-5}
$k(\mathrm{~W} / \mathrm{m} \cdot \mathrm{K})$	0.64	0.134
Pr	4.7	140

(a) If the outlet temperature of the oil is $60^{\circ} \mathrm{C}$, determine the total heat transfer rate and the outlet temperature of the water.
(b) Determine the length (L) required for the heat exchanger.

Solution

(a) $q=\dot{m}_{c} c_{p, c}\left(T_{c, o}-T_{c, i}\right)=\dot{m}_{h} c_{p, h}\left(T_{h, i}-T_{h, o}\right)=0.1 \times 1900 \times(100-60)=7600 \mathrm{~W}$
$T_{c, o}=T_{c, i}+\frac{\dot{m}_{h} c_{p, h}\left(T_{h, i}-T_{h, o}\right)}{\dot{m}_{c} c_{p, c}}=30+\frac{1900 \times 40}{4200}=48.1^{\circ} \mathrm{C}$
(b) $A=\pi D_{i} L=\frac{\dot{m}_{c} c_{p, c}\left(T_{c, o}-T_{c, i}\right)}{U \Delta T_{\mathrm{lm}}}, L=\frac{\dot{m}_{c} c_{p, c}\left(T_{c, o}-T_{c, i}\right)}{\pi D_{i} U \Delta T_{\mathrm{lm}}}=\frac{\dot{m}_{c} c_{p, c}\left(T_{c, o}-T_{c, i}\right) \ln \frac{T_{h, i}-T_{c, o}}{T_{h, o}-T_{c, i}}}{\pi D_{i} U\left[\left(T_{h, i}-T_{c, o}\right)-\left(T_{h, o}-T_{c, i}\right)\right]}$ $=\frac{0.1 \times 4200 \times(48.1-30) \ln [(100-48.1) /(60-30)]}{\pi \times 20 \times 10^{-3} \times 50 \times[(100-48.1)-(60-30)]}=60.6 \mathrm{~m}$

Table. Summary of convection heat transfer correlations for external flow.

Correlation

$$
\begin{aligned}
& \mathrm{Nu}_{x}=0.332 \mathrm{Re}_{x}^{1 / 2} \operatorname{Pr}^{1 / 3} \\
& \mathrm{Nu}_{x}=0.664 \mathrm{Re}_{x}^{1 / 2} \operatorname{Pr}^{1 / 3} \\
& \mathrm{Nu}_{x}=0.0296 \mathrm{Re}_{x}^{4 / 5} \operatorname{Pr}^{1 / 3}
\end{aligned}
$$

$$
\overline{\mathrm{Nu}}_{L}=\left(0.037 \mathrm{Re}_{L}^{4 / 5}-871\right) \operatorname{Pr}^{1 / 3}
$$

Geometry
Condition
Flat plate
Flat plate
Flat plate

Flat plate

Laminar, local, $T_{f}, \quad 0.6 \leq \operatorname{Pr}$
Laminar, average, $T_{f}, 0.6 \leq \operatorname{Pr}$
Turbulent, local, $T_{f}, \operatorname{Re} \leq 10^{8}$
$0.6 \leq \operatorname{Pr} \leq 60$
Mixed, average, $T_{f}, \operatorname{Re} \leq 10^{8}$
$0.6 \leq \operatorname{Pr} \leq 60$

