Thermodynamics: Quiz #1

April 4, 2008

- 1. (10%) What is heat capacity? Calculate the difference between C_p and C_v .
- 2. (20%) Find the ΔS_{total} and ΔU of a system when 1 mole of an ideal gas expands from V_A to V_B through the following ways.
 - i) isothermally and reversibly (P=P_{ext})
 - ii) adiabatically and reversibly (P=P_{ext})
 - iii) isothermally and irreversibly (Pext=0)
 - iv) adiabatically and irreversibly. (Pext=0)
- 3. (10%) In a Carnot cycle shown in Figure 1 as below, show that (a) $\frac{V_b}{V_a} = \frac{V_c}{V_d}$ and
 - (b) the efficiency is equal to $\frac{T_2-T_1}{T_2}$.
- 4. (10%) Show that $\left(\frac{\partial U}{\partial n_i}\right)S, V, nj = \left(\frac{\partial H}{\partial n_i}\right)S, P, nj = \left(\frac{\partial G}{\partial n_i}\right)T, P, nj$ which is called chemical potential (μ_i) . (10%)
- 5. (10%) Show that $S = k \ln \Omega$ through statistical approach.

(over)

- 6. (15%) A rigid container at constant temperature is divided into three compartments of equal volume by two partitions. Each compartment contains 1 mole of ideal gas A, B, and B in series. All gases are at 1 atm pressure.
 - (a) Calculate the increase in entropy, by classical and statistical methods, which occurs when the partition between A and B is removed.
 - (b) Calculate the increase in entropy, by classical and statistical methods, which occurs when all three partitions are removed.
 - (c) If each compartment contains 1 mole of A, 2 moles of B, and 0 moles of B in series, respectively and the first partition between A and B gases is removed, calculate the increase in entropy and discuss the result with the result from (b).
- 7. (10%) Using the Second Law of Thermodynamics, show that $\Delta G=0$ and $\Delta G<0$ for the equilibrium and the spontaneous process of a reaction, respectively and state the conditions to use these.
- 8. (15%) A particular substance undergoes a reversible expansion from an initial pressure of 20 atm. to a final pressure of 8 atm. The path of the process is described by the equation

$$P = \frac{36}{V} - 4$$

where P is in (atm.) and V is in (liter/mole). If ΔU for this change in state is -1400 J/mol, determine (a) W, (B) Q, and (c) ΔH in (J/mol). Note: 1 (atm)(liter)=101.3 J

Please answer the following question.

I have missed () classes during the period of $3/3 \sim 4/4/08$

1. (20%) (a) One mole of supercooled liquid Ag is adiabatically contained at 1224K. Calculate (a) the fraction of the silver which spontaneously freezes and (b) the entropy produced by the freezing.

$$\Delta H^{\rm M}$$
 = 11,090 J at $T_{\rm m}$ =1234K
$$C_{\it p,Ag(l)}$$
 = 30.5 J/mole K
$$C_{\it p,Ag(s)}$$
 = 21.30 + 8.54 x 10⁻³ T + 1.51 x 10⁻⁵ T⁻² J/mole K

2. (20%) (a) Derive the Clausius-Clapeyron equation and (b) calculate the molar heat of evaporation, $\Delta H_{(l-\nu)}$, and (c) the molar heat of melting, $\Delta H_{(s-l)}$, of Zn at the triple point and with following information:

$$\ln P^{\circ}(atm) = -15,780/T - 0.755 \ln T + 19.25$$
 (vapor pressure of solid Zn)
 $\ln P^{\circ}(atm) = -15,250/T - 1.255 \ln T + 21.79$ (vapor pressure of liquid Zn)

- 3. (10%) Using Gibbs-Helmholtz equation, show that $\Delta H'^{\text{Mix}}$ of an ideal gas is equal to zero.
- 4. (10%) Show that $\Delta G^{M} = \Delta G^{M,id} + G^{xs}$ using G_{i}° , \overline{G}_{i} and the facts that $G^{M} = \Delta G^{M,id} + G^{xs}$.
- 5. (20%) (a) Explain why we do not obtain a completely ordered or segregated solution when A-B bond energy is different from A-A and B-B bond energy, (b) What is the limiting conditions to use Q-C model for a solution? (c) Estimate ϵ_{AB} for the Au(fcc)-Cu(fcc) solid solution below if $\epsilon_{AB} = 1.1\epsilon_{AA} = 1.2\epsilon_{BB}$ and (d) calculate the ΔG^M at 1100K at $X_{Au} = 0.7$:

$$G^{XS} = -28,280X_{An}X_{Cn}$$
 (J)

6. (20%) (a) Using the free energy diagram for Ni-Fe (at 1600K) below, (a) find the $G^{\rm M}$ =of the solution with $X_{\rm Fe}$ =0.2, 0.4, 0.6, and 0.8, respectively and (b) plot $a_{\rm Ni}$ and $a_{\rm Fe}$ vs $X_{\rm Fe}$. Show your detailed calculations. Note: $G_{\rm Ni}{}^{\rm o}$ = -90.33 KJ/mol, and $G_{\rm Fe}{}^{\rm o}$ = -89.34 KJ/mol at 1600K.

Please answer the following question.

I have missed () classes during the period of $4/07 \sim 5/09/08$

Thermodynamics: Quiz #3 (Final)

June 13, 2008

- 1. (a) Express the state functions U, H, A, and G in differential forms using thermodynamic first and second laws.
 - (b) Show that the Raoult's law works for the solvent where the Henry's law works for the solute B.
- 2. (a) Derive the Clausius-Clapeyron equation and (b) calculate the molar heat of melting, $\Delta H_{(s-l)}$, of substance A at the triple point with following information:

$$\ln P^{\circ}(atm) = -\frac{44400}{T} - 1.01 \ln T + 21.88$$
 (vapor pressure of solid A)

$$\ln P^{\circ}(atm) = -\frac{40350}{T} - 1.21 \ln T + 23.79 \text{ (vapor pressure of liquid A)}$$

3. (10%) Demonstrate that if the activity coefficients of a binary solution can be expressed as

$$ln\gamma_A = \alpha_1 X_B + \frac{1}{2} \alpha_2 X_B^2 + \frac{1}{3} \alpha_3 X_B^3 + \cdots$$

and
$$ln\gamma_B = \beta_1 X_A + \frac{1}{2} \beta_2 X_A^2 + \frac{1}{3} \beta_3 X_A^3 + \cdots$$

over the entire composition range, then $\alpha_1 = \beta_1 = 0$, and that if the variation of the activity coefficients can be represented by the quadratic terms alone, then $\alpha_2 = \beta_2$.

- 4. (20%) A binary A-B system shows a regular solution behavior with $\Omega = 14,421.5 \text{ J}.$
 - (a) Find out the compositions of the separated phases at 700K.
 - (b) Estimate the activity of B when $X_B = 0.40$ at 700K.
 - (c) Calculate the ratio of the separated phases at 700K. Note the molecular weights of A and B elements are 45 and 60, respectively.
- 5. (20%) Al_2O_3 , which melts at 2324K and Cr_2O_3 , which melts at 2538K form

complete ranges of solid and liquid solutions. Assuming that $\Delta S^{o}_{mCr2O3} = \Delta S^{o}_{mAl2O3}$ and that the solid and liquid solutions in the system Al_2O_3 - Cr_2O_3 behave ideally, calculate

- (a) The temperature at which equilibrium melting begins when an alloy X_{A1203} =0.5 is heated
- (b) The composition of the melt which first forms
- (c) The temperature at which equilibrium melting is complete
- (d) The composition of last-formed solid (Note: $\Delta H^{o}_{mAl2O3} = 107,500 J$)
- 6. (20%) A CO_2 -CO- H_2 - H_2O gas mixture at a total pressure of 1 atm exerts an oxygen partial pressure of 10^{-7} atm at $1600\,$ °C. Use the data below
 - i) In what ratio was CO₂ and H₂ mixed to produce this value of P_{O2}?
 - ii) What is the Pco?
 - iii) What oxygen partial pressure is exerted by the equilibrium gas mixture produced by mixing CO₂ and H₂ in the ratio 3:1?

(i)
$$C + O_2 = CO_2$$
 $\Delta G^{\circ} = -394,100 - 0.84T$ (J)
(ii) $2C + O_2 = 2CO$ $\Delta G^{\circ} = -223,400 - 175.3T$ (J)
(iii) $H_2 + 1/2O_2 = H_2O$ $\Delta G^{\circ} = -247,500 + 55.85$ (J)

7. (10%)

Consider the partial decomposition of gaseous P_4 according to $P_{4(g)} = 2P_{2(g)}$.

- (a) Calculate the temperature at which X_{P4} and X_{P2} are 0.6 and 0.4, respectively at total pressure of 1 atm.
- (b) Find total pressure at which X_{P4} and X_{P2} are 0.6 and 0.4, respectively at 1800K

For the decomposition reaction $\Delta G^{\circ} = 225,400 + 7.90 \text{ T lnT} - 209.4 \text{ T}$ (J)

8. (30%) (a) (5%) Using the information provided in Prob. 6, find out the equilibrium temperature for each reaction below,

$$C_{(gr)}+ CO_2 (P=1 atm) = 2CO_2 (P=1 atm)$$

- (b) (10%) Find out the equilibrium P_{CO}/P_{CO2} ratio at the same temperature numerically if total pressure is 1 atm.
- (c) (10%) Find out the oxygen partial pressure by calculation which is at

equilibrium with CO and CO2 at the ratio.

(d) (5%) What are the ranges of the CO/CO₂ ratio and oxygen partial pressure to reduce Cu₂O selectively from the powder mixture of CoO and Cu₂O at 900 $^{\circ}$ C. R=8.3144 J/K. Show the results graphically using the Diagram provided. Check with following information.

(i)
$$2Cu + 1/2O_2(g) = Cu_2O(s) \Delta G^\circ = -162,200 + 69.24T$$
 (J)

(ii)
$$2\text{Co} + 1/2\text{O}_2$$
 (g) = $\text{CoO}(\text{s}) \Delta G^{\circ} = -217,500 + 72.0\text{T}$ (J)

- 9. (10%) H_2 + 1/2O₂= H_2 O ΔG^o =-247,500 + 55.85T (J) for 298-2000°C. Use this information and Elingham diagram provided,
 - (a) Find the range of pressure ratio of $P_{\rm H2}/P_{\rm H2O}$ to reduce MnO_2 at 900K.
 - (b) Find the same for P_{CO}/P_{CO2} .
- 10. (10%) Using the definition of activity, P_i/P_i^o , show that the reaction constant, K, can be expressed as $K = a_{MO}/a_M \ P_{O2}^{-1/2}$ for the reaction below. Note that $M_{(s)}$ and $MO_{(s)}$ are not pure in this system.

$$M_{(s)} + 1/2O_{2(g)} = MO_{(s)}$$

- 11. (Bonus 20%) see the problem in the back of the Ellingham diagram.
- 12. Please answer the following question.

I have missed () classes during the period of 5/12~6/15/08

Have a wonderful summer!!