MEMS Process & Design Project Term project presentation

2008.5.31

Content

- Project goal
- Design result
- Fabrication result
- Evaluation result
- Conclusion

Final Presentation, May. 31, 2008 MEMS Fabrication and Design

Project Goal

• Goal

 Design and Fabrication of the *x/y* dual-axis comb-drive MEMS Resonator

- Design Constraints
 - 1. Chip size: 4 mm x 4 mm
 - 2. Lithography, etch constraints: minimum dimension (4 um line and space)
 - 3. Primary mode natural frequency: 5 kHz
 - 4. Secondary mode natural frequency: 5 kHz + 500 Hz (± 10 %)
 - 5. Actuation voltage: The lower, the better.

Spring Design (1)

- Clab-leg spring(1)
 - Good
 - Simple structure
 - Easy to design
 - Bad
 - Weak to stress
 - · Tend to be bend unexpected direction

Spring Design (2)

• Clab-leg spring (2)

Spring constant

Y-direction

 $k_y = \frac{4F_y}{\delta_y} = \frac{Etw_a^3(L_b + 4\alpha L_a)}{L_a^3(L_b + \alpha L_a)}$

Final Presentation, May. 31, 2008 MEMS Fabrication and Design

Spring Design (3)

R

Serpentine spring

Spring constant

lf b=c, For odd n

X-direction

Y-direction

Final Presentation, May. 31, 2008 MEMS Fabrication and Design

Spring Design (3)

• Clab-leg spring (3)

Final Presentation, May. 31, 2008 MEMS Fabrication and Design

Spring Design (4)

- · First spring design using the equation
 - Supposed Mass: 2mm * 2mm * 65um (6.058*10⁻⁷ kg)
 - N=5
 - Spring width = 4um
 - a=32um, b=170um
 - Calculated Spring constant
 - Kx=193.2 N/m
 - Ky=152.3 N/m
 - Calculated Resonate frequency
 - fx=5685 Hz
 - fy=5048 Hz

Spring Design (5)

• First simulation result

Second mode :4517Hz

Final Presentation, May. 31, 2008 MEMS Fabrication and Design

Comb Structure Design (1)

- Dual axis drive structure → less combs on each axis
- Need more comb or space
- Design more comb \rightarrow reduce the comb finger width
- Reduce empty space → reduce space between comb support beam and support beam
- → Safety?

Spring Design (4)

Serpentine spring simulation result

	Calculated frequency	Simulated frequency	Error
First mode	5048 Hz	4327 Hz	15 %
Second mode	5685 Hz	4517 Hz	20 %

Final Presentation, May. 31, 2008 MEMS Fabrication and Design

Comb Structure Design (3)

• Forces of Comb Drive structure

Comb Structure Design (2)

• Spring Constant of comb finger

Force on a comb finger $F = 1/2 \times (\mathcal{E}_0 \times Ls \times h) \times (\frac{1}{(G_1 - x)^2} - \frac{1}{(G_1 + x)^2}) \times V^2$

Final Presentation, May. 31, 2008 MEMS Fabrication and Design

Fabrication error(2)

- Footing effect (1)
 - Different between mass and spring

Final Presentation, May. 31, 2008 MEMS Fabrication and Design

Fabrication error(1)

- Under-cut effect
 - Don`t consider

Final Presentation, May. 31, 2008 MEMS Fabrication and Design

Fabrication error(3)

- Footing effect (2)
 - 80%~95% → safe

Final mask

Simulation result(1)

• Design #1

1st mode

2nd mode

Final Presentation, May. 31, 2008 MEMS Fabrication and Design

2nd mode

1st mode

Fabrication Result(1)

· Backside picture of the whole structure

Fabrication Result (2)

• Front side of spring part

Final Presentation, May. 31, 2008 MEMS Fabrication and Design

Fabrication Result (4)

Substrate

R

Final Presentation, May. 31, 2008 MEMS Fabrication and Design

Fabrication Result (3)

Backside picture of spring

Final Presentation, May. 31, 2008 MEMS Fabrication and Design

Fabrication Result (5)

Support beam

Evaluation result (1)

	1 st mode	2 nd mode	Calculated
	calculated	calculated	difference
	frequency	frequency	
Design #1	5749	5105	644
Design #2			
	1 st mode	2 nd mode	Simulated
	Simulated	Simulated	difference
	frequency	frequency	
Design #1	5053	5502	451
Design #2	4512	5030	518
	1 st mode	2 nd mode	Measured
	measured	measured	difference
	frequency	frequency	
Design #1	4500	4970	470
Design #2	4100	4600	500

Final Presentation, May. 31, 2008 MEMS Fabrication and Design

Conclusion

- Use the serpentine spring
- Make 2 type of design
- · Satisfy the project goal

Final Presentation, May. 31, 2008 MEMS Fabrication and Design

