SIGNAL and SYSTEMS

April 13, 2008

(Instructor : In-Joong Ha, Professor)

EXAM I
[Problem 1] (20 points) (1) Prove that time-invariant linear discrete-time systems satisfy the following property :

$$
\begin{equation*}
\left(x[n] * h_{1}[n]\right) * h_{2}[n]=\left(x[n] * h_{2}[n]\right) * h_{1}[n] \tag{1.1}
\end{equation*}
$$

where $\mathrm{x}[\mathrm{n}]$ is the input, while $h_{k}[n]$ is the impulse response of the time-invariant linear discrete-time system H_{k}, $\mathrm{k}=1,2$. (2) Also, give an illustrative example showing that the property in (1.1) does not hold if even one of the two systems $H_{k}, \mathrm{k}=1,2$ is not linear.
[Problem 2] (30 points) (1) Strictly speaking, the following general Nth-order linear constant-coefficient ODE cannot be used to represent a causal system S. Explain why.

$$
\begin{equation*}
\sum_{k=0}^{N} a_{k} \frac{d^{k} y(t)}{d t^{k}}=\sum_{k=0}^{M} b_{k} \frac{d^{k} x(t)}{d t^{k}} \tag{2.1}
\end{equation*}
$$

(2) Show that the system represented by (2.1) is linear and time-invariant.
(3) Find the general Nth-order linear constant-coefficient ODE which can represent legally a causal system but which gives the same input-output transfer function as the above ODE.
(4) Give the block diagram representation of the Nth-order linear constant-coefficient ODE you have found in (3).
[Problem 3] (10 points) Consider an LTI system S relaxed at $t=-\infty$ and an input signal $x(t)=4 e^{-2 t} u(t-3)$. If

$$
\begin{equation*}
x(t) \rightarrow h(t) \rightarrow y(t) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d x(t)}{d t} \rightarrow h(t) \rightarrow-2 y(t)+3 e^{-3 t} u(t) \tag{3.2}
\end{equation*}
$$

then determine the impulse response $h(t)$ of S.
[Problem 4] (10 Points) Suppose we are given the following information about a signal $x[n]$ where N is the period of signal and the Fourier series coefficient of the signal is denoted by a_{k}.

1. $\mathrm{x}[\mathrm{n}]$ is a real and odd signal.
2. $\mathrm{N}=7$
3. $-2 a_{8}=a_{12}$
4. $\left|a_{15}\right|^{2}=1$
5. $\frac{1}{7} \sum_{n=0}^{6}|x[n]|^{2}=10$

Specify two different signals that satisfy these conditions
[Problem 5] (30 Points) Consider a discrete-time LTI system S with the following impulse response.

$$
h[n]=\left\{\begin{array}{cc}
1 & 0 \leq n \leq 2 \tag{5.1}\\
-1 & -2 \leq n \leq-1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Suppose that the input to the system S is the periodic signal given gy

$$
\begin{equation*}
x[n]=\sum_{k=-\infty}^{\infty} 2 \delta(n-4 k) \tag{5.2}
\end{equation*}
$$

With period $T=4$.
(1) Determine the Fourier-series coefficients of the output $y[n]$,
(2) The signal $x_{(m)}[n]$ defined as

$$
x_{(m)}[n]=\left\{\begin{array}{cc}
x\left[\frac{n}{m}\right] & n=0, \pm m, \pm 2 m, \ldots \tag{5.3}\\
0 & \text { otherwise }
\end{array}\right.
$$

is obtained by scaling the signal $x[n]$ in time. Let a_{k} be the Fourier-series coefficient of the input signal $x[n]$, and b_{k} be the Fourier-series coefficient of the time-scaling signal $x_{(m)}[n]$. Derive the relation between a_{k} and b_{k}.
(3) Suppose that the input $x[n]$ to the discrete-time LTI system S is changed into $x_{(5)}[n]$. Determine Fourier-series coefficients of the output $y[n]$

