SIGNAL and SYSTEMS

April 13, 2008

(Instructor : In-Joong Ha, Professor)

EXAM I

[**Problem 1**] (20 points) (1) Prove that time-invariant linear discrete-time systems satisfy the following property :

$$(x[n] * h_1[n]) * h_2[n] = (x[n] * h_2[n]) * h_1[n]$$
(1.1)

where x[n] is the input, while $h_k[n]$ is the impulse response of the time-invariant linear discrete-time system H_k , k=1,2. (2) Also, give an illustrative example showing that the property in (1.1) does not hold if even one of the two systems H_k , k=1,2 is not linear.

[**Problem 2**] (**30 points**) (1) Strictly speaking, the following general Nth-order linear constant-coefficient ODE cannot be used to represent a causal system S. Explain why.

$$\sum_{k=0}^{N} a_k \frac{d^k y(t)}{dt^k} = \sum_{k=0}^{M} b_k \frac{d^k x(t)}{dt^k}$$
(2.1)

(2) Show that the system represented by (2.1) is linear and time-invariant.

(3) Find the general Nth-order linear constant-coefficient ODE which can represent legally a causal system but which gives the same input-output transfer function as the above ODE.

(4) Give the block diagram representation of the Nth-order linear constant-coefficient ODE you have found in (3).

[Problem 3] (10 points) Consider an LTI system S relaxed at $t = -\infty$ and an input signal $x(t) = 4e^{-2t}u(t-3)$. If

$$x(t) \rightarrow h(t) \rightarrow y(t)$$
 (3.1)

and

$$\frac{dx(t)}{dt} \rightarrow \boxed{h(t)} \rightarrow -2y(t) + 3e^{-3t}u(t)$$
(3.2)

then determine the impulse response h(t) of S.

[Problem 4] (10 Points) Suppose we are given the following information about a signal x[n] where N is the period of signal and the Fourier series coefficient of the signal is denoted by a_k .

- 1. x[n] is a real and odd signal.
- 2. N = 7
- 3. $-2a_8 = a_{12}$
- 4. $|a_{15}|^2 = 1$
- 5. $\frac{1}{7} \sum_{n=0}^{6} |x[n]|^2 = 10$

Specify two different signals that satisfy these conditions

[Problem 5] (30 Points) Consider a discrete-time LTI system S with the following impulse response.

$$h[n] = \begin{cases} 1 & 0 \le n \le 2 \\ -1 & -2 \le n \le -1 \\ 0 & \text{otherwise} \end{cases}$$
(5.1)

Suppose that the input to the system S is the periodic signal given gy

$$x[n] = \sum_{k=-\infty}^{\infty} 2\delta(n-4k)$$
(5.2)

With period T = 4.

(1) Determine the Fourier-series coefficients of the output y[n],

(2) The signal $x_{(m)}[n]$ defined as

$$x_{(m)}[n] = \begin{cases} x[\frac{n}{m}] & n = 0, \pm m, \pm 2m, ... \\ 0 & \text{otherwise} \end{cases}$$
(5.3)

is obtained by scaling the signal x[n] in time. Let a_k be the Fourier-series coefficient of the input signal x[n], and b_k be the Fourier-series coefficient of the time-scaling signal $x_{(m)}[n]$. Derive the relation between a_k and b_k .

(3) Suppose that the input x[n] to the discrete-time LTI system S is changed into $x_{(5)}[n]$. Determine Fourier-series coefficients of the output y[n]

- E N D –