
SIGNAL and SYSTEMS   May 24, 2008 

(Instructor : In-Joong Ha, Professor) 

EXAM II 

 

[Problem 1] (10 Points) Consider the signal ( )x t  in Fig. 1 below.  

(a) Find the Fourier transform ( )X jw of ( )x t . 

(b) Consider the new signal ( )x t defined as 
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Find the signal  such that  is not the same as( )g t ( )g t ( )x t  and   
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<Figure 1> 

  

[Problem 2] (10 Points) Let 1 2( , )x t t
 
be a signal that depends upon two independent 

variables  and . The two-dimensional Fourier Transform of 1t 2t 1 2( , )x t t  is defined as 
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(a) Determine the inverse transform of 1 2( , )X jw jw  

 

  (b) Determine the two-dimensional Fourier Transform of the following signal 
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 [Problem 3] (10 Points) Find the discrete-time signal whose Fourier transform is given by 
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 [Problem 4] (10 Points) Consider a system built as the cascade interconnection of two LTI 

systems with frequency responses 
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(a) Find the difference equation describing the overall system. 

(b) Determine the impulse response of the overall system. 

 

[Problem 5] (20 Points) (a) Find the condition under which the formal Fourier transform of 

the signal 

 [ ] [ ]n

m
y n x m

=−∞
=∑  (5.1) 

exists. Then, derive its formal Fourier transform. 

(b) Show that the Fourier transform of the above signal not satisfying such a condition can be 

expressed as follows. 
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(c) In Example 5.8 of the textbook, the Fourier transform ( jX e ω
 of the unit step 

[ ] [ ]x n u n  is derived in the following steps.  

 

First, the following facts are used. 
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Then, applying the results in (5.1), (5.2) yields 

 

01( ) ( ) ( ) ( 2
(1 )

1 ( 2 )
1

j j j
j

k

j
k

)X e G e G e
e

k
e

ω ω
ω

ω

kπ δ ω π

π δ ω π

∞

−
=−∞

∞

−
=−∞

= +
−

= + −
−

∑

∑

−
 (5.5) 

 

Explain which parts in the above arguments are not mathematically logical. 

 

[Problem 6] (20 Points) Let [ ]x n  be a signal that is 0 outside the interval . For 

, the -point DFT(discrete Fourier transform) of 

10 1n N≤ ≤ −

1N N≥ N [ ]x n  is given by 
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It is convenient to write eq. (6.1) as 
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Suppose that s even. Let [ ]N i [2 ]f n x n=  represent the even-indexed samples of [ ]x n d , an



let [ ]g n resent the odd-indexed samples. [2 1]x n= +  
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f n  and  are zero outside the interval [ ]g n 0 ( / 2)n N 1≤ ≤ − . (a) Show that 

[ ]X k  of [ ]x n  can be expressed as (b) Show that the -point DFT N
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Where 
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 (c) Show that, for all k, 
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Note that and [ ],F k k 0,1,..., ( / 2) 1N= − , [G ], 0,1,..., ( / 2) 1k k N= − , a poinre the ( /N t 

DFTs of [ ]
2) -

f n  [ ]g n , ctively. Thus, eq. (6.3) indicates that the length- N  DFT  

[ ]
and respe of

x n  can calculated in terms of two DFTs of length / 2N .  be 

(d) Determine the number of complex multiplications required to compute 

[ 1N], 0,1, 2,...,X k k = − , from eq. (6.3) by first computing [ ]F k  and [ ]G k . (Assume that   

[x ]n

1±

 is complex and that the required values of  have been pre-computed and stored in 

a table. For simplicity, do not exploit the fact that, for certain values of  and k ,  is 

equal to  or 

nk
NW

n nk
NW

j± and hence does not, strictly speaking, require a full complex 

multiplication. Also, ignore the multiplications by the quantity 1/2 in (6.3)). 
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