
Topics in Communications (Spring, 2008), Midterm

1. Inner and outer polyhedral approximations. Let ⊆   be a closed convex set, 

and suppose that ⋯  are on the boundary of  . Suppose that for each  , 


     defines a supporting hyperplane for  at , i.e., 

⊆   ≦ . Consider the two polyhedra

  ⋯ 

    ≦    ⋯
Show that  ⊆ ⊆  . Draw a picture illustrating this.

2. Log-convexity of moment functions. Suppose   → is nonnegative with 

⊆ dom  . For  ≧  define

 


∞



Show that is a log-convex function. (If  is a positive integer, and  is a 

probability density function, then  is the th moment of the distribution.)

 Use this to show that the Gamma function,

 


∞

   .

is log-convex for  ≧ .

3. Network flow problem. Consider a network of  nodes, with directed links 

connecting each pair of nodes. The variables in the problem are the flows on each 

link:  will denote the flow from node  to node  . The cost of the flow along the 

link from node  to node  is given by  , where  are given constants. The 

total cost across the network is

  
  





Each link flow  is also subject to a given lower bound  (usually assumed to be

nonnegative) and an upper bound . The external supply at node  is given by , 

where    means an external flow enters the network at node  , and    

means that at node  , an amount  ows out of the network. We assume that 

  , i.e., the total external supply equals total external demand. At each node 

we have conservation of flow: the total flow into node  along links and the 

external supply, minus the total flow out along the links, equals zero.

The problem is to minimize the total cost of ow through the network, subject to 

the constraints described above. Formulate this problem as an LP.



4. Power assignment in a wireless communication system. We consider  

transmitters with powers ⋯ ≧ , transmitting to  receivers. These powers 

are the optimization variables in the problem. We let ∈×  denote the matrix of 

path gains from the transmitters to the receivers;  ≧  is the path gain from 

transmitter  to receiver  .

The signal power at receiver  is then   , and the interference power at 

receiver  is   
≠ 

. The signal to interference plus noise ratio, denoted 

SINR, at receiver , is given by   , where    is the (self-) noise power 

in receiver  . The objective in the problem is to maximize the minimum SINR ratio, 

over all receivers, i.e., to maximize

min  ⋯ 


There are a number of constraints on the powers that must be satisfied, in addition 

to the obvious one  ≧ . The first is a maximum allowable power for each 

transmitter, i.e.,  ≦ 
max , where 

max  is given. In addition, the transmitters 

are partitioned into groups, with each group sharing the same power supply, so 

there is a total power constraint for each group of transmitter powers. More 

precisely, we have subsets ⋯  of ⋯ with ∪⋯∪  ⋯, and 

∩   if ≠  . For each group , the total associated transmitter power 

cannot exceed 
  :


∈
 ≦ 

 ,   ⋯ 

Finally, we have a limit 
  on the total received power at each receiver:


 



 ≦ 
,   ⋯

(This constraint reflects the fact that the receivers will saturate if the total 

received power is too large.)

Formulate the SINR maximization problem as a generalized linear-fractional 

program.

5. Hyperbolic constraints as SOC constraints. Verify that ∈ , ∈ satisfy

 ≦  ,  ≧ ,  ≧ 

if and only if

∥  ∥ ≦   ,  ≧ ,  ≧ 
Use this observation to cast the following problems as SOCPs.

(a) maximizing harmonic mean



maximize  




 

 
 

with domain  ≻ , where 
 is th row of  .

(b) maximizing geometric mean

maximize
 




 



with domain  ≻ , where 
 is th row of  .

Important Notice

A. Time: 2:30 ~ 4:30

B. Only textbook is allowed (No other books, documents, or papers)

C. Extra answer sheets will be used.


