1 (40 points) Nonhomogeneous Boundary Conditions

If the ends $x=0$ and $x=L$ of the bar are kept at constant temperatures U_{1} and U_{2}, respectively, what is the temperature $u_{I}(x)$ in the bar after a long time (theoretically, as $t \rightarrow \infty$)? First guess, and answer the questions of this following PDE.

$$
\begin{aligned}
& u_{t}=c^{2} u_{x x} \quad 0<x<L, t>0 \\
& u(x, 0)=f(x) \\
& u(0, t)=U_{1}, u(L, t)=U_{2}
\end{aligned}
$$

Hint. In order to solve the PDE, we need to set $u(x, t)=w(x, t)+v(x)$, where $v(x)$ satisfies that $v_{t}=v_{x x}=0$ and $w(x, t)$ is a homogeneous solution of

$$
\begin{aligned}
& w_{t}=c^{2} w_{x x} \quad 0<x<L, t>0 \\
& w(0, t)=0, w(L, t)=0 .
\end{aligned}
$$

Solution: Since $v_{t}=v_{x x}=0$ and $w(0, t)=u(0, t)-v(0)=0, w(L, t)=u(L, t)-v(L)=0$, we have $v(x)=c_{1} x+c_{2}$ and

$$
\begin{aligned}
w(0, t) & =u(0, t)-c_{2} \\
& =U_{1}-c_{2}=0 . \\
w(L, t) & =u(L, t)-\left(c_{1} L+c_{2}\right) \\
& =U_{2}-c_{1} L-c_{2}=0 .
\end{aligned}
$$

Solving the two equations,

$$
v(x)=\left(U_{2}-U_{1}\right) x / L+U_{1}
$$

and

$$
w(x, t)=u(x, t)-\left(U_{2}-U_{1}\right) x / L-U_{1} .
$$

Since $w(x, 0)=u(x, 0)-\left(U_{2}-U_{1}\right) x / L-U_{1}=f(x)-\left(U_{2}-U_{1}\right) x / L-U_{1}$, we need only solve the problem

$$
\begin{aligned}
& w_{t}=c^{2} w_{x x} \quad 0<x<L, t>0 \\
& w(0, t)=0, w(L, t)=0 . \\
& \left.w(x, 0)=f(x)-\left(U_{2}-U_{1}\right)\right) x / L-U_{1} .
\end{aligned}
$$

And we know that

$$
w(x, t)=\Sigma_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L} e^{-\lambda_{n}^{2} t}, \quad\left(\lambda_{n}=c n \pi / L\right),
$$

where

$$
B_{n}=\frac{2}{L} \int_{0}^{L}\left[f(x)-\left(U_{2}-U_{1}\right) x / L-U_{1}\right] \sin \frac{n \pi x}{L} d x .
$$

Since $\lim _{t \rightarrow \infty} w(x, t)=0$,

$$
\lim _{t \rightarrow \infty} u(x, t)=\lim _{t \rightarrow \infty} w(x, t)+v(x)=v(x)=\left(U_{2}-U_{1}\right) x / L+U_{1} .
$$

2 (60 points)

$$
u_{x x}+u_{y y}=0, \quad 0<x<2, \quad 0<y<3
$$

1. (30 points)

$$
\begin{aligned}
& u(x, 0)=\sin (\pi x) \\
& u(x, 3)=\sin (7 \pi x / 2), \quad u(0, y)=u(2, y)=0 \\
& u_{x x}+u_{y y}=0, \quad 0<x<2, \quad 0<y<3
\end{aligned}
$$

2. (30 points)

$$
\begin{array}{ll}
\partial u / \partial \mathbf{n}=0, & y=0 \text { or } y=3 \\
\partial u / \partial \mathbf{n}=\cos (\pi y) & x=0, \partial u / \partial \mathbf{n}=\cos (11 \pi y / 3) x=2
\end{array}
$$

1. By separation of variables and $u(0, y)=u(2, y)=0$,

$$
u(x, y)=\Sigma_{n=0}^{\infty} \sin \frac{n \pi x}{2}\left(c_{n} \cosh \frac{n \pi y}{2}+d_{n} \sinh \frac{n \pi y}{2}\right)
$$

The boundary conditions give us

$$
\begin{gathered}
u(x, 0)=\sin (\pi x)=\Sigma_{n=0}^{\infty} c_{n} \sin \frac{n \pi x}{2} \\
u(x, 3)=\sin (7 \pi x / 2)=\Sigma_{n=0}^{\infty} \sin \frac{n \pi x}{2}\left(c_{n} \cosh \frac{n \pi 3}{2}+d_{n} \sinh \frac{n \pi 3}{2}\right)
\end{gathered}
$$

Thus, only $c_{2}=1$ and $c_{n}=0$, otherwise. And

$$
c_{7} \cosh \frac{21 \pi}{2}+d_{7} \sinh \frac{21 \pi}{2}=1
$$

and

$$
c_{2} \cosh 3 \pi+d_{2} \sinh 3 \pi=0
$$

Thus $d_{7}=\left(\sinh \frac{21 \pi}{2}\right)^{-1}$, and $d_{2}=-c_{2} \operatorname{coth} 3 \pi$.
Therefore,

$$
\begin{gathered}
u(x, y)=\sin \pi x\left[c_{2} \cosh \pi y+d_{2} \sinh \pi y\right]+d_{7} \sin \frac{7 \pi x}{2} \sinh \frac{7 \pi y}{2} \\
=\sin \pi x[\cosh \pi y-(\operatorname{coth} 3 \pi) \sinh \pi y]+\left(\sinh \frac{21 \pi}{2}\right)^{-1} \sin \frac{7 \pi x}{2} \sinh \frac{7 \pi y}{2}
\end{gathered}
$$

2. We know that

$$
\begin{aligned}
& u_{y}(x, 0)=u_{y}(x, 3)=0 \\
& u_{x}(0, y)=-\cos (\pi y)
\end{aligned}
$$

and

$$
u_{x}(2, y)=\cos (11 \pi y / 3)
$$

By letting $u(x, y)=F(x) G(y)$, we have $G^{\prime \prime}+p^{2} G=0, F^{\prime \prime}-p^{2} F=0$ with $G^{\prime}(0)=G^{\prime}(3)=0$ and $p_{n}=n \pi / 3$. So, $G_{0}(y)=1$, and $G_{n}(y)=\cos \frac{n \pi y}{3}$. And also $F_{0}(x)=c_{0}+d_{0} x$ and $F_{n}(x)=$ $\left(c_{n} \cosh \frac{n \pi x}{3}+d_{n} \sinh \frac{n \pi x}{3}\right)$. And the general solution

$$
u(x, y)=c_{0}+d_{0} x+\Sigma_{n=1}^{\infty} \cos \frac{n \pi y}{3}\left(c_{n} \cosh \frac{n \pi x}{3}+d_{n} \sinh \frac{n \pi x}{3}\right)
$$

Finally, the boundary conditions determine the constants;

$$
\begin{gathered}
u_{x}(0, y)=-\cos (\pi y)=d_{0}+\Sigma_{n=1}^{\infty} \frac{n \pi}{3} d_{n} \cos \frac{n \pi y}{3} \\
u_{x}(2, y)=\cos \left(\frac{11 \pi y}{3}\right)=d_{0}+\Sigma_{n=1}^{\infty} \frac{n \pi}{3} \cos \frac{n \pi y}{3}\left(c_{n} \sinh \frac{2 n \pi}{3}+d_{n} \cosh \frac{2 n \pi}{3}\right)
\end{gathered}
$$

Now, we know that $d_{3}=-1 / \pi$ and $d_{n}=0$, otherwise.
And $c_{3}=(\operatorname{coth} 2 \pi) / \pi$ and $c_{11}=\frac{3}{11 \pi \sinh (22 \pi / 3)}$. Therefore,

$$
u(x, y)=c_{0}+\frac{\cos \pi y}{\pi}[-\sinh \pi x+(\operatorname{coth} 2 \pi) \cosh \pi x]+\frac{3}{11 \pi \sinh (22 \pi / 3)} \cos \frac{11 \pi y}{3} \cosh \frac{11 \pi x}{3}
$$

$3\left(50\right.$ points) $u_{t}-u_{x x}=5 \sin x$ with $u(0, t)=u(\pi, t)=0$, and $u(x, 0)=\frac{1}{2} \sin 3 x-\frac{3}{7} \sin 11 x$.

1. (10 points) Show that if $w(x)$ satisfies $w_{x x}=-5 \sin x$ with $w(0)=w(\pi)=0$ and $v_{t}-v_{x x}=0$, $v(0, t)=v(\pi, t)=0$ and $v(x, 0)=f(x)-w(x)$.
then $u(x, t)=v(x, t)+w(x)$ is the solution of the previous nonhomogeneous PDE in (1.1).
2. (10 points) Obtain $w(x)$ satisfying the previous two conditions.
3. (20 points) Obtain $v(x, t)$ which is a solution of the previous homogeneous heat equation in (1.2).
4. (10 points) Using (2) and (3) results, determine $u(x, t)$ for $x \in[0, \pi]$ and $t \geq 0$.
5.

$$
\begin{gathered}
u_{t}(x, t)-u_{x x}(x, t)=v_{t}(x, t)-v_{x x}(x, t)-w_{x x}(x)=5 \sin x \\
u(0, t)=v(0, t)+w(0)=0 \\
u(\pi, t)=v(\pi, t)+w(\pi)=0 \\
u(x, 0)=v(x, 0)+w(x)=f(x)-w(x)+w(x)=f(x)
\end{gathered}
$$

since $u(x, t)=v(x, t)+w(x)$, and $-w_{x x}=5 \sin x, w(0)=w(\pi)=0, v_{t}-v_{x x}=0, v(0, t)=v(\pi, t)=0$ and $v(x, 0)=f(x)$.
2. After calculating $w_{x x}$ with $w(x)=A \sin x+B \cos x$, we know that $B=0$ and $A=5$. Thus,

$$
w(x)=5 \sin x
$$

3. By solving the previous homogeneous heat equation of $v(x, t)$, we know that

$$
v(x, t)=\sum_{n=1}^{\infty} B_{n} \sin (n x) e^{-n^{2} t}
$$

where

$$
B_{n}=\frac{2}{\pi} \int_{0}^{\pi}\left(\frac{1}{2} \sin 3 x-\frac{3}{7} \sin 11 x-5 \sin x\right) \sin (n x) d x
$$

And the orthogonality of $\{\sin x, \sin 2 x, \sin 3 x, \sin 4 x, \ldots, \sin (n x), \ldots\}$ makes us obtain that

$$
v(x, t)=\left(\frac{1}{2} \sin 3 x\right) e^{-3^{2} t}-\left(\frac{3}{7} \sin 11 x\right) e^{-11^{2} t}-(5 \sin x) e^{-t}
$$

4. Using 2 and 3 answers, for $x \in[0, \pi]$ and $t \geq 0$,

$$
u(x, t)=v(x, t)+w(x)=\left(\frac{1}{2} \sin 3 x\right) e^{-3^{2} t}-\left(\frac{3}{7} \sin 11 x\right) e^{-11^{2} t}+5 \sin x\left(1-e^{-t}\right)
$$

4 (50 points) Θ-Independent Dirichlet Problem on a Ball

Use the expression in spherical coordinates: $\Delta u=\frac{1}{\rho^{2}}\left[\left(\rho^{2} u_{\rho}\right)_{\rho}+\frac{1}{\sin \phi}\left(u_{\phi} \sin \phi\right)_{\phi}+\frac{1}{\sin ^{2} \phi} u_{\theta \theta}\right]$

1. (30 points) Solve the θ-independent Dirichlet problem on a ball: $\Delta u \equiv \nabla^{2} u=0, \quad 0<\rho<1$, with $u(1, \theta, \phi)=f(\phi)$.
2. (20 points) Solve the Laplace equation inside the sphere $\rho=1$ subject to the boundary condition: $u(1, \theta, \phi)=3 P_{5}(\cos \phi)-7 P_{2}(\cos \phi)$, where P_{n} is the $n^{t h}$ degree Legendre polynomial,
3. Since $\Delta u=0$, we have $\left(\rho^{2} u_{\rho}\right)_{\rho}+\frac{1}{\sin \phi}\left(u_{\phi} \sin \phi\right)_{\phi}=0$, which, upon separation via $u=R(\rho) \Phi(\phi)$, becomes

$$
\frac{\left[\rho^{2} R^{\prime}(\rho)\right]^{\prime}}{R(\phi)}=-\frac{\left[\Phi^{\prime}(\phi) \sin \phi\right]^{\prime}}{\Phi(\phi) \sin \phi}=\lambda
$$

So we get the two ODEs:

$$
\begin{gathered}
{\left[\rho^{2} R^{\prime}(\rho)\right]^{\prime}-\lambda R(\phi)=0} \\
{\left[\Phi^{\prime}(\phi) \sin \phi\right]^{\prime}+\lambda \Phi(\phi) \sin \phi=0}
\end{gathered}
$$

Now, the substitution $x=\cos \phi$ gives us the problem

$$
\left[\left(1-x^{2}\right) \Phi^{\prime}(\phi)\right]^{\prime}+\lambda \Phi=0, \quad-1<x<1
$$

which is just Legendre's equation with $\lambda_{n}=n(n+1)$, and has $\Phi_{n}(x)=P_{n}(x)$, the $n^{t h}$ degree Legendre polynomial as the solution. And

$$
\rho^{2} R^{\prime \prime}+2 \rho R^{\prime}-n(n+1) R=0
$$

and thus $R_{n}(\rho)=c_{1} \rho^{n}+c_{2} \rho^{-1-n}, \quad 0<\rho<1, n=0,1,2, \ldots$, .
Since $0<\rho<1$, the general solution is

$$
u(\rho, \phi, \theta)=\Sigma_{n=0}^{\infty} c_{n} \rho^{n} P_{n}(\cos \phi)
$$

Finally, the boundary condition gives us

$$
u(1, \phi, \theta)=f(\phi)=\Sigma_{n=0}^{\infty} c_{n} P_{n}(\cos \phi)
$$

And again letting $x=\cos \phi$, we have

$$
f\left(\cos ^{-1} x\right)=\Sigma_{n=0}^{\infty} c_{n} P_{n}(x)
$$

Thus, the c_{n} are just the Fourier-Legendre coefficients of the function $f\left(\cos ^{-1} x\right)$,

$$
c_{n}=\frac{2 n+1}{2} \int_{-1}^{1} f\left(\cos ^{-1} x\right) P_{n}(x) d x=\frac{2 n+1}{2} \int_{0}^{\pi} f(\phi) P_{n}(\cos \phi) \sin \phi d \phi
$$

2. Since $f(\phi)=u(1, \theta, \phi)=3 P_{5}(\cos \phi)-7 P_{2}(\cos \phi)$,

$$
u(\rho, \phi, \theta)=3 \rho^{5} P_{5}(\cos \phi)-7 \rho^{2} P_{2}(\cos \phi)
$$

