Communication Systems

(Midterm Exam Solution(4/26))

1.

a) advantages: Using DPSK avoids the need for possibly complex carrier-recovery schemes to provide an accurate phase estimate.
disadvantages: The probability of error for DPSK is only slightly worse than ordinary BPSK, particularly at higher SNR.
b) Bandwidth efficiency refers to the amount of information that can be transmitted over a given bandwidth in a specific communication system. It is a measure of how efficiently a limited frequency spectrum is utilized by the physical layer protocol.

Energy efficiency는 동일한 Error probability에서 사용된 신호의 에너지 정도. Error probability 에 대한 $\operatorname{SNR}\left(\frac{\varepsilon_{b}}{N_{0}}\right)$ 을 기준으로 효율성을 측정한다.
2.
a) Describe the Nyquist criterion for no ISI.

The necessary and sufficient condition for $x(t)$ to satisfy

$$
x(n T)= \begin{cases}1 & (n=0) \\ 0 & (n \neq 0)\end{cases}
$$

is that its Fourier transform $X(f)$ satisfy

$$
\sum_{m=-\infty}^{\infty} X\left(f+\frac{m}{T}\right)=T
$$

b)

The modified duobinary signal, which is the special case to (approximately) physically realizable transmitting and receiving filters, is specified by the samples

$$
x\left(\frac{n}{2 W}\right)=x(n T)=\left\{\begin{array}{cc}
1, & n=-1 \\
-1, & n=1 \\
0, & \text { otherwise }
\end{array}\right.
$$

The corresponding pulse $x(t)$ is given by

$$
x(t)=\operatorname{sinc}\left(\frac{t+T}{T}\right)-\operatorname{sinc}\left(\frac{t-T}{T}\right)
$$

and its spectrum is given by

$$
\begin{aligned}
X(f) & =\left\{\begin{array}{cc}
\frac{1}{2 W} e^{j \frac{\pi f}{W}}-e^{j \frac{\pi f}{W}}, & |f| \leq W, \\
0, & |f|>W,
\end{array}\right. \\
& =\left\{\begin{array}{cl}
\frac{1}{2 W} \sin \frac{\pi f}{W}, & |f| \leq W, \\
0, & |f|>W,
\end{array}\right.
\end{aligned}
$$

which is shown in the followed figures.

(a)

(b)
3.

For the two waveforms to be orthogonal, they must fulfill the orthogonality constraint of equation:

$$
\begin{equation*}
\int_{0}^{T} \cos \left(2 \pi f_{1} t+\phi\right) \cos 2 \pi f_{2} t d t=0 \tag{3.1}
\end{equation*}
$$

Using the basic trigonometric identities, we can write equation (3.1) as

$$
\begin{equation*}
\cos \phi \int_{0}^{T} \cos 2 \pi f_{1} t \cos 2 \pi f_{2} t d t-\sin \phi \int_{0}^{T} \sin 2 \pi f_{1} t \sin 2 \pi f_{2} t d=0 \tag{3.2}
\end{equation*}
$$

so that

$$
\begin{align*}
\cos \phi \int_{0}^{T}\left[\cos 2 \pi\left(f_{1}+f_{2}\right) t+\right. & \left.\cos 2 \pi\left(f_{1}-f_{2}\right) t\right] d t \tag{3.3}\\
& -\sin \phi \int_{0}^{T}\left[\sin 2 \pi\left(f_{1}+f_{2}\right) t+\sin 2 \pi\left(f_{1}-f_{2}\right) t\right] d=0 .
\end{align*}
$$

Then, we can derive equation (3.4) as

$$
\begin{equation*}
\cos \phi \sin 2 \pi\left(f_{1}-f_{2}\right) T+\sin \phi\left[\sin 2 \pi\left(f_{1}-f_{2}\right) T-1\right] \approx 0, \tag{3.4}
\end{equation*}
$$

For coherent detection, the spacings needed for orthogonality are found by setting $\phi=0$, which gives

$$
\begin{equation*}
\sin 2 \pi\left(f_{1}-f_{2}\right) T=0, \tag{3.5}
\end{equation*}
$$

or

$$
\begin{equation*}
f_{1}-f_{2}=\frac{n}{2 T} \tag{3.6}
\end{equation*}
$$

Thus the minimum spacing for coherent FSK signaling occurs for $n=1$ as follows:

$$
\begin{equation*}
f_{1}-f_{2}=\frac{1}{2 T} \tag{3.7}
\end{equation*}
$$

4.

a) The optimal receiver is shown in the next figure

$$
\begin{gather*}
r(t) \longrightarrow \psi_{2}(T-t \rightarrow t) \\
\psi_{1}(t)=\frac{s_{1}(t)}{\sqrt{\varepsilon_{b}}}=\sqrt{\frac{3}{A^{2} T}} \frac{A t}{T}\left(\because \varepsilon_{b}=\frac{A^{2} T}{3}\right), \tag{4.1}\\
\psi_{2}(t)=\frac{d_{2}(t)}{\sqrt{\varepsilon_{2}}}=\sqrt{\frac{4}{A^{2} T}}\left(A-\frac{3 A t}{2 T}\right)\left(\because \varepsilon_{2}=\frac{A^{2} T}{4}\right), \tag{4.2}\\
s_{11}=\int_{0}^{T} s_{1}(t) \psi_{1}(t) d t=\sqrt{\varepsilon_{b}}=\sqrt{\frac{A^{2} T}{3}}, \\
s_{12}=\int_{0}^{T} s_{1}(t) \psi_{2}(t) d t=0, \\
s_{21}=\int_{0}^{T} s_{2}(t) \psi_{1}(t) d t=\frac{1}{\sqrt{\varepsilon_{b}}} \frac{A^{2} T}{6}=\sqrt{\frac{A^{2} T}{12}}, \tag{4.3}\\
s_{22}=\int_{0}^{T} s_{1}(t) \psi_{2}(t) d t=\frac{1}{\sqrt{\varepsilon_{2}}} \frac{A^{2} T}{4}=\sqrt{\frac{A^{2} T}{4}}, \\
\therefore \boldsymbol{r}=\boldsymbol{s}_{m}+\boldsymbol{n}, \quad m=1,2, \tag{4.4}
\end{gather*}
$$

where $\boldsymbol{r}=\left(r_{1}, r_{2}\right), \boldsymbol{s}_{m}=\left(s_{m 1}, s_{m 2}\right)$, and $\boldsymbol{n}=\left(n_{1}, n_{2}\right)$.
b) $\left\|\boldsymbol{s}_{1}\right\|^{2}=\left\|\boldsymbol{s}_{2}\right\|^{2}$ and two signals are equiprobable, so probability of error is

$$
\begin{align*}
P_{b} & =\frac{1}{2} P\left(e \mid s_{1}\right)+\frac{1}{2} P\left(e \mid s_{2}\right) \\
& =\sqrt{\frac{d_{12}^{2}}{2 N_{0}}}=\sqrt{\frac{A^{2} T}{6 N_{0}}}=\sqrt{\frac{\varepsilon_{b}}{2 N_{0}}}\left(\because d_{12}^{2}=\frac{A^{2} T}{3}\right) . \tag{4.5}
\end{align*}
$$

C) $\frac{\varepsilon_{b}}{N_{0}}(\mathrm{~dB})=\log _{10} \frac{\varepsilon_{b}}{N_{0}}=10 \mathrm{~dB}, \frac{\varepsilon_{b}}{N_{0}}=10$.

$$
\therefore \quad P_{b}=Q(\sqrt{5})=Q(0.236)=0.0091
$$

5.

a) Gary code 를 사용한 M-ary PSK 에서는 error 가 발생한 k bit 의 한 symbol 당 한 개의 bit 만 error 가 발생하였다고 볼 수 있다.

$$
\therefore P_{b}=\frac{1}{k} P_{M}
$$

b) Symbol 한 개당 error probability $=\frac{P_{M}}{M-1}=\frac{P_{M}}{2^{k}-1}\left(\because k=\log _{2} M\right)$

Error 가 발생한 한 개의 symbol 에서 error 발생 가능한 bit 수 $=\sum_{n=1}^{k} n\binom{k}{n}=k \times 2^{k-1}$
Bit error probability $P_{b}=\frac{1}{k} \times\left(k \times 2^{k-1}\right) \times \frac{P_{M}}{2^{k}-1}=\frac{2^{k-1}}{2^{k}-1} P_{M} \approx \frac{P_{M}}{2} \quad(k \gg 1)$
6.

The channel bandwidth is $W=4000 \mathrm{~Hz}$.
a)-c): Pulse shape has $\alpha=0.5$, so $\frac{1}{2 T}(1+\alpha)=2000 \cdot \frac{1}{T}=2667$.
a) Binary PSK : 2667 bps.
b) 4-ary PSK : 5334 bps.
c) 16-ary rectangular QAM :10668 bps
d) binary orthogonal FSK, with noncoherent detection: The frequency spacing between twofrequencies $\Delta f=\frac{1}{T}$. Then, the two frequencies are $f_{c}+\frac{1}{2 T}$ and $f_{c}-\frac{1}{2 T}$. Since $w=4000 \mathrm{~Hz}, \frac{1}{2 T}=1000$. Hence, the bit rate is 2000 bps .
e) orthogonal 4-ary FSK with noncoherent detection:

The frequency spacing between twofrequencies $\Delta f=\frac{1}{T}$. Then, the four frequencies are $f_{c}+\frac{3}{2 T}$, $f_{c}+\frac{1}{2 T}, f_{c}-\frac{1}{2 T}$, and $f_{c}-\frac{3}{2 T} \cdot \frac{1}{2 T}=500 \mathrm{~Hz}$, so the symbol rate is $\frac{1}{T}=1000$ and since each symbol carries two bits of information, the bit rate is 2000 bps .
7.
a)

$$
\psi_{1}(t)=\left\{\begin{array}{cl}
\sqrt{\frac{2}{T}}, & 0 \leq t<\frac{T}{2} \\
0, & \text { otherwise }
\end{array} \psi_{2}(t)=\left\{\begin{array}{cl}
\sqrt{\frac{2}{T}}, & \frac{T}{2} \leq t<T \\
0, & \text { otherwise }
\end{array}\right.\right.
$$

b) Assuming that the signal $s_{1}(t)$ is transmitted, the received vector at the output of the samplers is

$$
\begin{equation*}
\boldsymbol{r}=\left[\sqrt{\frac{A^{2} T}{2}}+n_{1}, n_{2}\right] \tag{7.1}
\end{equation*}
$$

where n_{1}, n_{2} are zero mean Gaussian random variables with variance $\frac{N_{0}}{2}$. The probability of error $P\left(\varepsilon \mid s_{1}\right)$ is

$$
\begin{align*}
P\left(\varepsilon \mid s_{1}\right) & =P\left(n-2-n_{1}>\sqrt{\frac{A^{2} T}{2}}\right) \\
& =\frac{1}{\sqrt{2 \pi N_{0}}} \int_{\frac{A^{2} T}{2}}^{\infty} e^{-\frac{x^{2}}{2 N_{0}}} d x=Q\left[\sqrt{\frac{A^{2} T}{2 N_{0}}}\right] \tag{7.2}
\end{align*}
$$

Where we have used the fact the $n=n_{2}-n_{1}$ is a zero-mean Gaussian random variable with variance N_{0}. So that

$$
\begin{equation*}
P(\varepsilon)=\frac{1}{2} P\left(\varepsilon \mid s_{1}\right)+\frac{1}{2} P\left(\varepsilon \mid s_{2}\right)=Q\left[\sqrt{\frac{A^{2} T}{2 N_{0}}}\right] \tag{7.3}
\end{equation*}
$$

c) The signal waveform $\psi_{1}\left(\frac{T}{2}-t\right)$ matched to $\psi_{1}(t)$ is exactly the same with the signal waveform $\psi_{2}(T-t)$ matched to $\psi_{2}(t)$. That is,

$$
\psi_{1}\left(\frac{T}{2}-t\right)=\psi_{2}(T-t)=\psi_{1}(t)=\left\{\begin{array}{cl}
\sqrt{\frac{2}{T}}, & 0 \leq t<\frac{T}{2} \tag{7.4}\\
0, & \text { otherwise }
\end{array}\right.
$$

d) If the signal $s_{1}(t)$ is transmitted, then the received signal $r(t)$ is

$$
\begin{align*}
& r(t)=s_{1}(t)+\frac{1}{2} s_{1}\left(t-\frac{T}{2}\right)+n(t) \tag{7.5}\\
& r_{1}=A \sqrt{\frac{2}{T}} \frac{T}{2}+n_{1}=2 \sqrt{\frac{A^{2} T}{8}}+n_{1} \tag{7.6}\\
& r_{2}=\frac{A}{2} \sqrt{\frac{2}{T}} \frac{T}{2}+n_{2}=\sqrt{\frac{A^{2} T}{8}}+n_{2}
\end{align*}
$$

If the optimal receiver uses a threshold V to base its decisions, that is

$$
\begin{equation*}
\left.r_{1}-r_{2} \stackrel{s_{1}}{\lessgtr}\right\rangle V \tag{7.7}
\end{equation*}
$$

Then the probability of error $P\left(e \mid s_{1}\right)$ is

$$
\begin{equation*}
P\left(e \mid s_{1}\right)=P\left(n_{2}-n_{1}>\sqrt{\frac{A^{2} T}{8}}-V\right)=Q\left[\sqrt{\frac{A^{2} T}{8 N_{0}}}-\frac{V}{\sqrt{N_{0}}}\right] \tag{7.8}
\end{equation*}
$$

If $s_{2}(t)$ is transmitted, then

$$
\begin{align*}
& r(t)=s_{2}(t)+\frac{1}{2} s_{2}\left(t-\frac{T}{2}\right)+n(t) \tag{7.9}\\
& r_{1}=n_{1} \\
& r_{2}=A \sqrt{\frac{2}{T}} \frac{T}{2}+n_{2}=\sqrt{\frac{A^{2} T}{2}}+n_{2} \tag{7.10}
\end{align*}
$$

The probability of error $P\left(e \mid s_{2}\right)$ is

$$
\begin{equation*}
P\left(e \mid s_{2}\right)=P\left(n_{1}-n_{2}>\sqrt{\frac{A^{2} T}{2}}+V\right)=Q\left[\sqrt{\frac{A^{2} T}{2 N_{0}}}+\frac{V}{\sqrt{N_{0}}}\right] \tag{7.11}
\end{equation*}
$$

Thus, the average probability of error is given by

$$
\begin{gather*}
P(e)=\frac{1}{2} Q\left[\sqrt{\frac{A^{2} T}{8 N_{0}}}-\frac{V}{\sqrt{N_{0}}}\right]+\frac{1}{2} Q\left[\sqrt{\frac{A^{2} T}{2 N_{0}}}+\frac{V}{\sqrt{N_{0}}}\right] \tag{7.12}\\
\frac{\partial P(e)}{\partial V}=0, \therefore V=-\frac{1}{2} \sqrt{\frac{A^{2} T}{8}} \tag{7.13}
\end{gather*}
$$

e) Let a be fixed to some value between 0 and 1 . Then we obtain

$$
\begin{gather*}
P\left(e \mid s_{1}, \alpha\right)=P\left(n_{2}-n_{1}>(1-\alpha) \sqrt{\frac{A^{2} T}{2}}-V(\alpha)\right)=Q\left[(1-\alpha) \sqrt{\frac{A^{2} T}{2 N_{0}}}-\frac{V(\alpha)}{\sqrt{N_{0}}}\right] \tag{7.14}\\
P\left(e \mid s_{2}, \alpha\right)=P\left(n_{1}-n_{2}>\sqrt{\frac{A^{2} T}{2}}+V(\alpha)\right)=Q\left[\sqrt{\frac{A^{2} T}{2 N_{0}}}+\frac{V(\alpha)}{\sqrt{N_{0}}}\right] \\
P(e \mid \alpha)=\frac{1}{2} P\left(e \mid s_{1}, \alpha\right)+\frac{1}{2} P\left(e \mid s_{2}, \alpha\right) \tag{7.15}\\
\frac{\partial P(e)}{\partial V}=0, \therefore V(\alpha)=-\frac{\alpha}{2} \sqrt{\frac{A^{2} T}{2}} \tag{7.16}\\
V=\int_{0}^{1} V(\alpha) f(\alpha) d a=-\frac{1}{2} \sqrt{\frac{A^{2} T}{2}} \int_{0}^{1} \alpha d \alpha=-\frac{1}{4} \sqrt{\frac{A^{2} T}{2}} \tag{7.17}
\end{gather*}
$$

8.

The output of the matched filter at the time instant $m T$ is

$$
\begin{equation*}
y_{m}=\sum_{k} a_{m} x_{k-m}+v_{m}=a_{m}+\frac{1}{4} a_{m-1}+v_{m} \tag{8.1}
\end{equation*}
$$

The autocorrelation function of the noise sample v_{m} is

$$
\begin{equation*}
E\left[v_{k} v_{j}\right]=\frac{N_{0}}{2} x_{k-j} \tag{8.2}
\end{equation*}
$$

Thus, the variance of the noise is

$$
\begin{equation*}
\sigma_{v}^{2}=\frac{N_{0}}{2} x_{0}=\frac{N_{0}}{2} \tag{8.3}
\end{equation*}
$$

If a symbol by symbol detector is employed and we assume that the symbols $a_{m}=a_{m-1}=\sqrt{\varepsilon_{b}}$ have been transmitted, then the probability of error

$$
\begin{align*}
P\left(\varepsilon \mid a_{m}=a_{m-1}=\sqrt{\varepsilon_{b}}\right) & =P\left(y_{m}<0 \mid a_{m}=a_{m-1}=\sqrt{\varepsilon_{b}}\right) \\
& =P\left(v_{m}<-\frac{5}{4} \sqrt{\varepsilon_{b}}\right)=\frac{1}{\sqrt{\pi N_{0}}} \int_{-\infty}^{-\frac{5}{4} \sqrt{\varepsilon_{b}}} e^{-\frac{v_{m}^{2}}{N_{0}}} d v_{m} \tag{8.4}\\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{-\frac{5}{4}} \frac{\sqrt{\frac{\varepsilon_{b}}{N_{0}}}}{} e^{-\frac{v^{2}}{2}} d v=Q\left[\frac{5}{4} \sqrt{\frac{2 \varepsilon_{b}}{N_{0}}}\right]
\end{align*}
$$

If however $a_{m-1}=-\sqrt{\varepsilon_{b}}$, then

$$
\begin{equation*}
P\left(\varepsilon \mid a_{m}=\sqrt{\varepsilon_{b}}, a_{m-1}=-\sqrt{\varepsilon_{b}}\right)=P\left(\frac{3}{4} \sqrt{\varepsilon_{b}}+v_{m}<0\right)=Q\left[\frac{3}{4} \sqrt{\frac{2 \varepsilon_{b}}{N_{0}}}\right] \tag{8.5}
\end{equation*}
$$

Since the two symbols $\sqrt{\varepsilon_{b}},-\sqrt{\varepsilon_{b}}$ are used with equal probability, we conclude that

$$
\begin{align*}
P(e) & =P\left(\varepsilon \mid a_{m}=\sqrt{\varepsilon_{b}}\right)=P\left(\varepsilon \mid a_{m}=-\sqrt{\varepsilon_{b}}\right) \\
& =\frac{1}{2} Q\left[\frac{5}{4} \sqrt{\frac{2 \varepsilon_{b}}{N_{0}}}\right]+\frac{1}{2} Q\left[\frac{3}{4} \sqrt{\frac{2 \varepsilon_{b}}{N_{0}}}\right] \tag{8.6}
\end{align*}
$$

