1. BJT
A.
T)

$$
\alpha_{F}=\frac{q A E F_{n, B}\left(\omega_{b}\right)}{I_{E}}
$$

$$
I_{E}=q A_{E}\left[F_{n, B}(0)+\int_{E B \cdot d q} u d x+F_{p, E(0)}\right]
$$

$$
=q A_{E}\left[1.01 F_{n, B(0)}+10^{-0}\right]
$$

$$
=q A E\left[1.01 \times 10^{23}+0.001 \times 10^{23}\right]
$$

$$
=q A E \times 1.011 \times 10^{23}
$$

$$
\therefore \quad \alpha_{F}=\frac{0.99 \times 10^{23}}{1.011 \times 10^{23}}=\frac{0.99}{1.011}
$$

ii)

$$
\begin{align*}
I_{C B O} & =q A_{E}\left[\int G d x+F_{p} c(0)\right] \\
& =q A_{E}\left[5 \times 10^{18}+1 \times 10^{17}\right] \\
& =1.6 \times 10^{-19} \times 10^{-8} \mathrm{~cm}^{2} \times 5.1 \times 10^{18} \\
& =8.16 \times 10^{-9} \mathrm{~A} \tag{5}
\end{align*}
$$

B
i) collector current $\simeq q A E F_{n}, B\left(\omega_{b}\right)$

$$
\begin{aligned}
& \text { Collector current } \simeq q A E T n .0\left(F_{n B}\right) B\left(\omega_{b}\right)=v_{\text {set }} \times N_{D C}=1 \times 10^{16} \mathrm{~cm} / \mathrm{sec} \times 6 \times 1 \mathrm{~cm}^{3} \\
& \\
& \left.=6 \times 10^{-3} / \mathrm{cm}^{2} \cdot \mathrm{sec}\right)
\end{aligned}
$$

$$
\begin{aligned}
\therefore \text { Collector Current } & \simeq 1.6 \times 10^{-19} \times 10^{-8} \mathrm{~cm}^{-2} \times 6 \times 10^{-3} / \mathrm{cm}^{2} \cdot \mathrm{sec} \\
& =9.6 \times 10^{-4} \mathrm{~A}=0.96 \mathrm{~mA} \longleftarrow
\end{aligned}
$$

$$
\begin{equation*}
=9.6 \times 10^{-4} \mathrm{~A}=0.96 \mathrm{~mA} \tag{5}
\end{equation*}
$$

ii)

$$
\begin{align*}
& V_{B E} \\
& \frac{F_{m, B}(0)}{F_{m, B\left(\omega_{b}\right)}}=\frac{e^{0,9 / V E}}{e^{V_{B E} / V_{t}}} \\
& \Rightarrow \quad V_{B E}=0.1+V_{E} \ln \frac{F_{n}, B\left(\omega_{b}\right)}{F_{m, B(0)}}=0.7+0.024 \ln 6 \\
& \cong 0.743 \mathrm{~V} \longleftarrow(5) \tag{5}
\end{align*}
$$

C.

(5)

$$
\begin{aligned}
& I_{C}=I_{C O} e^{V_{B E} / V E} \\
& \left(I_{10}=g_{g} A_{E} 0.9 p F_{n} B\left(\omega_{k}\right) e^{-0.7 / 4 t}\right) \\
& I_{B}=I_{B D} e^{V B I} / I_{H E} \\
& \left(I_{B D}={ }_{\beta} A_{E} R_{0 C}(B E) e^{-0.9 / 2 N E}\right) \\
& I_{e}=I_{B} \\
& V_{B E}=2 V_{t} \ln \frac{I_{B O}}{I_{C_{0}}} \\
& =2 V_{t} \ln \frac{10^{-0} \times 10^{-0.2} / 2 V_{t}}{0.99 \times 10^{-3} \times e^{-0.9} / V_{t}} \\
& =2 V_{t} \ln \frac{10^{20}}{0.99 \times 10^{-3}}+0.7 \\
& =0.369 \mathrm{~V} \leftarrow A
\end{aligned}
$$

D.
1)

$$
\begin{gather*}
I_{C E O}=\frac{I_{C B O} M}{1-\alpha M}=-1.545 \times 10^{-8} \mathrm{~A} \tag{5}\\
\binom{M=\frac{1}{1-\left(\frac{V_{C B}}{B V_{C B O}}\right)^{4}}=\frac{1}{1-\left(\frac{6}{3}\right)^{4}}=2.17}{\alpha \simeq \alpha_{F}=\frac{0.51}{1.011}}
\end{gather*}
$$

2)

$$
\begin{aligned}
& \frac{1}{1-\left(\frac{B V_{C E O}}{B V_{C B O}}\right)^{\alpha}} \simeq \frac{1}{\alpha} \\
\Rightarrow B V_{C E D} & =B V_{C E O}^{\sqrt[4]{1-\alpha}}=7 \times(1-0.981)^{1 / 4} \\
& =2.657 \quad(5)
\end{aligned}
$$

3) $I_{L E O} \uparrow \rightarrow \alpha \uparrow \rightarrow M \downarrow \rightarrow B V_{C E O} \downarrow$
(5)
4) $\left.I_{\text {cEO }} \approx I_{c}\right|_{\text {Base prashout }}=q V_{\text {sad }} \times N N_{c} \times A_{E}$

$$
=\quad 9.6 \times 10^{-4} \mathrm{~A}
$$

\Rightarrow As base pushout starts, BVico Therease to Make high electric freld in B-C Jmotion.
2.

B

$$
\begin{aligned}
& V_{G}-V_{F B}=r \sqrt{\varphi_{S}+V_{B}}+\varphi_{S} \\
& V_{T}\left(V_{B}\right)=V_{F B}+r \sqrt{2 \varphi_{F}+V_{B}}+2 \varphi_{F} \\
& \left(V_{A}=V_{T}\right) \\
& \\
& V_{T}-V_{F B}=r \sqrt{\varphi_{S}+V_{B}}+\varphi_{S} \\
& \Rightarrow \sqrt{2 \varphi_{F}+V_{B}}+2 \varphi_{F}=r \sqrt{\varphi_{S}+V_{B}}+\varphi_{S} \\
& \Rightarrow r \sqrt{2 \varphi_{F}+V_{B}}+2 \varphi_{F}+V_{B}=r \sqrt{\varphi_{S}+V_{B}}+\varphi_{S}+V_{B} \\
& \Rightarrow\left(\sqrt{\varphi_{S}+V_{B}}\right)^{2}+r \sqrt{\varphi_{S}+V_{B}}-t=0
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \sqrt{\varphi_{s}+V_{B}}=\frac{-r+\sqrt{r^{2}+4 t}}{2} \\
& \varphi_{s}=\left(\frac{-r+\sqrt{r^{2}+4 t}}{2}\right)^{2}-V_{B} \\
& r=\frac{\sqrt{2 \gamma_{8} N_{a} \varepsilon_{5}}}{C_{0 x}} \quad\left(\quad c_{0 x}=\frac{\varepsilon_{0 x}}{t_{0 x}}\right) \\
& =0.5276 \\
& \therefore t=2.267 \\
& \therefore \varphi_{s}=0.59 \mathrm{~V}
\end{aligned}
$$

C.

$$
\begin{aligned}
\left|Q_{d \max }\right| & =\sqrt{2 q N_{a} \varepsilon_{s}\left(\varphi_{s}+V_{B}\right)} \\
& =\sqrt{2 \times 1.6 \times 10^{-19} \times 10^{17} \times 11.1 \times 8.85 \times 10^{-14} \times 1.6} \\
& =2.3 \times 10^{-1} \mathrm{c} / \mathrm{cm}^{2}
\end{aligned}
$$

