Eng Math2. Mid Term (10/29/2008)

(Closed book and note: 90 min. Total 200)

1. Evaluate the following integral (you need to give proper reasoning):

$$\int_{0}^{\infty} \frac{\sin w}{w} dw$$

2. It has been well known that surface integration of electric field over a closed surface results in q/ϵ_0 (Gaussian law) where q is point charge enclosed by the

surface, and ε_0 is the permittivity of free space: $\oint_{\mathcal{S}} \vec{E} \cdot \vec{n} da = \frac{q}{\varepsilon_0}$. It is also well

known that $\vec{F}(\text{force}) = q\vec{E}$ and $\varphi(\text{electrostatic potential}) = -\int_{\vec{r}_{\text{ref}}}^{\vec{r}} \vec{E} \cdot d\vec{r}$. Evaluate the followings:

(a)
$$\oint \nabla \varphi \cdot d\vec{r} = ?$$

(b)
$$\nabla \cdot \vec{E} = ?$$

(c)
$$\nabla \times \vec{E} = ?$$

- 3. Answer to each question properly:
- (a) simplify $\frac{d}{dt} \left[\vec{r}(t) \cdot (\vec{r}'(t) \times \vec{r}''(t)) \right]$.
- (b) Evaluate the integral $\oint_C (zdx + xdy + ydz)$ where C is the trace of the cylinder $x^2+y^2=1$ in the plane y+z=2. Orient C counterclockwise as viewed from above.

- 4. Answer to each question properly:
- (a) Find the Fourier transform of $\frac{d}{dx}[f(x)*g(x)]$.
- (b) Find the inverse Fourier transform of 1.
- 5. Find the Fourier cosine transform of f(x).

$$f(x) = e^{-ax}$$

6. (a) Referring to the figure on the right, sketch a rough shape of the convolution of a step function and a Gaussian function.

Hint)

$$u(x) * g(x) = \int_{-\infty}^{\infty} u(p)g(x-p)dp,$$

u(x):1 when $x \ge 0$, 0 when x < 0.

$$g(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

(b) Given that $\hat{f}[e^{-x^2}] = \frac{1}{\sqrt{2}}e^{-\frac{w^2}{4}}$, evaluate the Fourier transform of $(x-a)e^{-(x-a)^2}$.

Draw a diagonal straight line on a paper with rectangular shape and roll up the paper around a cylinder with a radius of a, as shown below:

The curve formed from this operation becomes a circular helix, which can be expressed as follows:

$$r(t) = (a \cos t, a \sin t, ct)$$

Obtain the direction, tangential vector, and the length of the curve (circular helix).

8 If $r = \sqrt{x^2 + y^2 + z^2}$ in the axisymmetric spherical coordinate, (a) Obtain $\nabla \phi(r)$ (b) Prove that $\nabla^2 \phi(r) = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \phi}{\partial r}\right)$

(a) Obtain
$$\nabla \varphi(r)$$

(b) Prove that $\nabla^2 \varphi(r) = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \frac{\partial \varphi}{\partial r})$

(c) Obtain
$$\nabla^2 (1/r)$$

9

A vector field F is defined at all the points in xy-plane except the origin as shown below:

$$\underline{F} = \left(-\frac{y}{x^2 + y^2}\right)\hat{1} + \left(\frac{x}{x^2 + y^2}\right)\hat{j}$$

(a) Obtain ∇x F(b) Obtain the line integral

for a circle with a radius of 1 around the origin.

Express the Fourier transform of the following functions

(a)
$$\mathcal{F}[f(x-a)]$$

(b)
$$\mathcal{F}\left[\int_0^x f(v)dv\right]$$

in terms of Fourier transform of f(x)

$$\mathcal{F}[f(x)]$$