Polymer Physics Exam #1 2008. 10. 13

Name

- 1. Explain the difference between conformation and configuration of polymer chains. (15)
- (a) Describe the meaning of number-average molecular weight and weight-average molecular weight. (10)
 - (b) Write down the methods of measuring the number-average molecular weight and weight-average molecular weight. (10)
- 3. We dissolved some polymer in 100ml of butanone and measured the flow times at 25 ℃ in an Ubbelhode capillary viscometer. The results are

Pure butanone	100 s
0.01 g/cm ³ solution	105.3 s
0.03 g/cm^3 solution	116.6 s
0.05 g/cm^3 solution	128.4 s
0.07 g/cm^3 solution	141.1 s
0.10 g/cm^3 solution	161.5 s

- (a) Examine whether the above experiment was carried out properly. Provide plausible theoretical grounds for your answer. (10)
- (b) Using the Mark-Houwink-Sakurada relation, determine the viscous average molecular weight. (K=39, a=0.58) (10)

4. Using the following table of data for $Hc/R(\theta)$ of a polystyrene in benzene at for concentrations and five angles, to determine M_w and R_g . (15)

c (mg/ml)	$\sin^2(\theta/2)=1/8$	$\sin^2(\theta/2)=1/4$	$\sin^2(\theta/2)=3/8$	$\sin^2(\theta/2)=1/2$
0.5	1.92	2.03	2.14	2.25
1.0	2.35	2.46	2.57	2.68
1.5	2.78	2.89	3.00	3.31
2.0	3.21	3.32	3.43	3.54

 $10^6 \text{ x Hc/R}(\theta) \text{ (mol/g)}$

- 5. (a) Describe the physical meaning of "Like dissolves Like" (10)
 - (b) Define the Flory interaction parameter (χ) in terms of solubility parameter difference. (10)
 - (c) Estimate the Flory interaction parameter between polystyrene and polybutadiene at room temperature if the solubility parameter of polystyrene is $\delta_{PS}=1.87 \times 10^4 (Jm^{-3})^{1/2}$ and that of polybutadiene is $\delta_{PB}=1.62 \times 10^4 (Jm^{-3})^{1/2}$. For simplicity assume $v_0 \approx 100 \text{ Å}^3$ (15)
- 6. In a graph of the composition dependence of the free energy of mixing, show the relationship between the stability and the shapes of graphitic curves. (15)
- 7. (a) Draw a phase diagram (temperature on the y axis and polymer volume fraction on the x axis) for a solvent polymer system having a UCST and obeying the Flory-Huggins theory. (10)
 - (b) Label the theta temperature and the critical point, and the upper critical solution temperature. (10)
 - (c) If N=10,000 what are the values of χ_c and $\Phi_{2,c}$? (10)

8. (Challenge) Chemical potential difference between pure solvent and polymer solution is

$$\mu_1 - \mu_1^{0} = \operatorname{RT}[\ln \phi_1 + (1 - \frac{1}{N})\phi_2 + \chi \phi_2^{2}]$$

(Φ_1 : solvent volume fraction, Φ_2 : polymer volume fraction, N: number of lattice sites of the polymer, χ : Flory-Huggins parameter)

(a) Derive
$$\mu_1 - \mu_1^0 = \operatorname{RT}\left[-\frac{\phi_2}{x_2} + (\chi - \frac{1}{2})\phi_2^2\right]$$
 when solution is dilute. (Hint: $\ln(1 - x) \cong -x - \frac{x^2}{2}$)
(10)

(b) Describe the state of the solution when χ =1/2. (15)

(c) Using
$$\mu_1 - \mu_1^{\circ} = \int_{P_0}^{P_0 + \pi} \frac{\partial \mu}{\partial P} dP$$
 in osmometry, derive A₂ (second virial coefficient). (20)

9. Please suggest or comment how we can make this lecture more interesting, enjoyable, and fruitful. (10)