Automata Theory

Midterm Exam : 23 October 2008

1. Find a DFA that is equivalent to the following NFA.
2. Find a regular grammar for $\Sigma=\{0,1\}$ that generates the set of all strings with at least one 1.
3. Prove or disprove that $L=\left\{a^{n}: n=3+4 k, k=0,1,2, \ldots\right\}$ is regular.
4. Prove or disprove that $L=\left\{w \in\{a, b\}^{*}: N_{a}(w) \neq N_{b}(w)\right\}$ is regular.
5. Let G be the following grammar.

$$
S \rightarrow a S b|b S a| S S \mid \epsilon
$$

Let $L_{a b}=\left\{w \in\{a, b\}^{*}: N_{a}(w)=N_{b}(w)\right\}$. Prove that $L(G)=L_{a b}$.
6. Let $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$. Describe L^{2} by using the set notation. Find a context-free grammar for L^{2}.

