Elementary Numerical Analysis

2008년 2학기

Final Examination

Dec. 6, 2008

- 1. Explain the following. (20 points)
 - a. Simpson's method of integration. Include the formula in the answer.
 - b. Modified linear interpolation method for finding roots.
 - c. Implicit Euler method and its advantages and disadvantages when compared with the explicit method.
 - d. Adams-Bashforth-Moulton method and its practical implementation.
 - e. Multistep method and its advantages and disadvantages when compared with the multipoint method
- 2. Consider the following matrix eigenvalue equation resulting from the discretization of a multidimensional boundary value problem: $Ax = \lambda Sx$. The **minimum** eigenvalue λ is sought. Answer the following. (20 points)
 - a. Derive the regular power iteration algorithm involving an inverse of a matrix with a formula to update the eigenvalue. Be careful about that the form of the matrix eigenvalue problem is slightly different from what you had in HW 7.
 - b. Convert it to the inverse power method form and justify the need for this conversion.
 - c. Define the dominance ratio and derive the practical method to estimate the dominance ratio during the iteration.
 - d. Explain how the dominance ratio should be used to avoid the false convergence.
 - e. Discuss about the possibility of having a wrong estimate of the dominance ratio by the formula you derived for problem c.
- 3. Consider a 3rd order polynomial to be used for numerical integration and also for solution of first order differential equations. Suppose four function values f_0, f_1, f_2, f_3 given with constant meshing (h), derive the following. (15 points)
 - a. weighting factor for the first function value (f_0) in the integral from 0 and 3*h*.
 - b. weighting factor for f_0 in the increment of the solution of $\frac{dy}{dt} = f(t, y)$, at the last interval (the 3rd interval). Suppose that y_0, y_1 , and y_2 are known and you are to find y_3 using a

third-order closed multipoint method.

- c. weighting factor for the first function value (f_0) in the increment in case of Adams-Bashforth method.
- 4. Answer the following regarding the Gauss quadrature method. (15 points)
 - a. Explain the basic idea of the Gauss Quadrature method for numerical integration with an example of two integration points.
 - b. Show that the roots of Legendre polynomial of order *n* become the integration points for integration with the precision order of 2n-1.
- 5. Answer the following regarding the Newton-Raphson method. (15 points)
 - a. Give the algorithm in a pseudo-code form assuming that the lower and upper bounds of the interval within which the root resides is known.
 - b. Show that the Newton-Raphson method is a unconditionally-convergent fixed point iteration scheme.
 - c. Suppose that there are multiple roots in a specified interval and you are to find all the roots. You can achieve the goal without modifying the algorithm you setup for finding a **single** root by slightly modifying the function itself if you use the previously found roots wisely.

Elementary Numerical Analysis

2008년 2학기

How can you do that? Hint: $f(x) = c \prod_{i=1}^{n} (x - \xi_i)$ where ξ_i 's are the roots of f(x). Think

about a way of transforming the function such that it won't have the previously-found roots, say, ξ_i , $i = 1 \cdots k$, (k < n).

- 6. Answer the following regarding the Runge-Kutta method. (15 points) a. Give the algorithm to implement the Runge-Kutta method.
 - b. One of the relations to be used for determining $\alpha'_i s$ and $\beta'_i s$ is $\omega_2 \alpha_1^2 + \omega_3 \alpha_2^2 + \omega_4 \alpha_3^2 = \frac{1}{3}$.

Derive this relation using the coefficient match condition for $f_{xy}f$ which comes from the

- third order term. Use the fact $\alpha_i = \beta_i$. If you can't, use the condition for f_{xx} .
- c. The Runge-Kutta method can be used for solving higher order differential equations although it is derived for the 1-st order differential equation. How can you do that?
- 7. Among the topics you've learned from this course for the whole semester, give three topics or points you think important and worthwhile to recommend for your juniors to learn. Provide a little bit of reasons for your choice. (Bonus points)

Congratulations! You've made through a tough course!