Convex optimization 중간시험 (2008. 12. 5)

이름:

1. Use the separating hyperplane theorem to prove the theorem of alternatives for linear strict generalized inequalities w.r.t. a proper cone K: exactly one of the following two systems is feasible.

$$Ax \prec_{K} b (I)$$
$$\lambda \neq 0, \ \lambda \succeq_{K^{*}} 0, \ A^{T} \lambda = 0, \ \lambda^{T} b \leq 0 (II)$$

2. Consider the following set.

$$K_{\text{pol}} = \left\{ x \in \mathbb{R}^{2k+1} | x_1 + x_2 t + x_3 t^2 + \dots + x_{2k+1} t^{2k} \right\}.$$

Prof. 'H' argued as follows to prove that K_{pol} is solid. Here, we denote $f_t = (1, t, t^2, \dots, t^{2k})^T$ so that $x_1 + x_2 t + x_3 t^2 + \dots + x_{2k+1} t^{2k} = f_t^T x$. "Suppose $f_t^T \bar{x} > 0$ for all $t \in \mathbb{R}$. We will show there is $\epsilon > 0$ such that $f_t^T (\bar{x} + \epsilon u) > 0$ for all u with ||u|| = 1. To do so, it suffices to show that there are constants $\rho > 0$ and τ such that $\left(\frac{f_t}{\|f_t\|}\right)^T \bar{x} \ge \rho$ and $\left(\frac{f_t}{\|f_t\|}\right)^T \bar{x} \le \tau$. But, since the set of $F = \left\{ \frac{f_t}{\|f_t\|} : t \in \mathbb{R} \right\}$ is compact, the maximum of $\left(\frac{f_t}{\|f_t\|} \right)^T \bar{x}$ is attained at $\frac{f_{\bar{t}}}{\|f_{\bar{t}}\|}$ for some $\bar{t} \in \mathbb{R}$. Then, since $\bar{x} \in K_{\text{pol}}$, we have $\left(\frac{f_t}{\|f_t\|}\right)^T \bar{x} > 0$, and, therefore, bounded below by a positive number $\rho > 0$. Also ···."

(a) What flaw(s) does his arguments have?

(b) Provide a correct proof that K_{pol} is solid.

(c) Can you characterize the interior of K_{pol} (other than the definition itself)? 3. A matrix $X \in S^n$ is called copositive if $z^T X z \ge 0$ for all $z \ge 0$. Verify that the set of copositive matrices is a proper cone. Find its dual cone.

4. Suppose f is differentiable. Then f is convex if and only if dom f is convex and for all $x, y \in \text{dom} f$,

$$f(y) \ge f(x) + \nabla f(x)^T (y - x).$$

5. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a convex function. Define $\tilde{f} : \mathbb{R}^n \to \mathbb{R}$ as $\tilde{f}(x) = \{g(x)|g \text{ is affine, } g(z) \leq f(z) \forall z\}$. Show f(x) = f(x) for $x \in \text{int dom} f$.

6. Prove or disprove.

a. The sum of quasiconvex functions is also quasiconvex.

b. A log-concave function is quasiconcave. Necessarily concave?

c. The sum of log-concave functions is log-concave.

7. Prove if $X \succeq Y \succeq 0$ then det $X \ge \det Y \ge 0$.