Final Exam - Convex Optimization (2008. 12. 18)

Name:

SIN:

Score: () / 100

1. (a) Consider the problem of minimizing a convex differentiable function $f : \mathbb{R}^n \to \mathbb{R}$ over a convex set X. Then $x \in X$ is optimal if and only if

$$\nabla f(x)^T (y-x) \ge 0, \ \forall \ y \in X.$$

(b) Consider an optimization problem min $\{f(x)|Ax = b\}$ where f is a convex differentiable function. Then a feasible solution \bar{x} of Ax = b is optimal if and only if there is ν such that $\nabla f(\bar{x}) = A^T \nu$. 2. (a) Show that $x^T x \leq yz, y \geq 0$, and $z \geq 0$ if and only if

$$\left\| \begin{bmatrix} 2x \\ y-z \end{bmatrix} \right\|_2 \le y+z, \ y \ge 0, \ \text{and} \ z \ge 0$$

(b) Rewrite the following problem as an SOCP.

$$\max\left\{\left(\prod_{i=1}^{m} (a_i^T x - b_i)\right)^{1/m} | Ax \ge b\right\},\$$

where a_i^T is the *i*th row of A.

3. Suppose a vector optimization problem has an optimal point x^* . Show that x^* is an optimal solution of the associated scalarized problem for any $\lambda \succ_{K^*} 0$. Also show the converse.

4. Derive a dual problem for

$$\min \sum_{i=1}^{N} \|A_i x + b_i\|_2 + \frac{1}{2} \|x - x_0\|_2^2$$

where, $A_i \in \mathbb{R}^{m_i \times n}$, $b_i \in \mathbb{R}^{m_i}$. First introduce new variables $y_i = A_i x + b_i$. 5. Derive the KKT condition for the problem,

$$\min \, \mathrm{tr} X - \log \det X$$

sub. to $Xs = y$,

with the domain S_{++}^n , and $y, s \in \mathbb{R}^n$ with $s^T y = 1$. Verify the optimal solution is

$$X^* = I + yy^T - \frac{1}{s^T s} ss^T.$$

6. Let $f_0, f_1, \ldots, f_m : \mathbb{R}^n \to \mathbb{R}$ be convex. Show that the function

$$p^*(u,v) = \inf \{ f_0(x) | x \in \mathcal{D}, f_i(x) \le u_i, i = 1, \dots, m, Ax - b = v \}$$

is convex.