Name:

SIN:
Score: () / 100

1. (a) Consider the problem of minimizing a convex differentiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ over a convex set X. Then $x \in X$ is optimal if and only if

$$
\nabla f(x)^{T}(y-x) \geq 0, \forall y \in X
$$

(b) Consider an optimization problem $\min \{f(x) \mid A x=b\}$ where f is a convex differentiable function. Then a feasible solution \bar{x} of $A x=b$ is optimal if and only if there is ν such that $\nabla f(\bar{x})=A^{T} \nu$.
2. (a) Show that $x^{T} x \leq y z, y \geq 0$, and $z \geq 0$ if and only if

$$
\left\|\left[\begin{array}{c}
2 x \\
y-z
\end{array}\right]\right\|_{2} \leq y+z, y \geq 0, \text { and } z \geq 0
$$

(b) Rewrite the following problem as an SOCP.

$$
\max \left\{\left(\prod_{i=1}^{m}\left(a_{i}^{T} x-b_{i}\right)\right)^{1 / m} \mid A x \geq b\right\}
$$

where a_{i}^{T} is the i th row of A.
3. Suppose a vector optimization problem has an optimal point x^{*}. Show that x^{*} is an optimal solution of the associated scalarized problem for any $\lambda \succ_{K^{*}} 0$. Also show the converse.
4. Derive a dual problem for

$$
\min \sum_{i=1}^{N}\left\|A_{i} x+b_{i}\right\|_{2}+\frac{1}{2}\left\|x-x_{0}\right\|_{2}^{2}
$$

where, $A_{i} \in \mathbb{R}^{m_{i} \times n}, b_{i} \in \mathbb{R}^{m_{i}}$. First introduce new variables $y_{i}=A_{i} x+b_{i}$.
5. Derive the KKT condition for the problem,

$$
\begin{aligned}
& \min \operatorname{tr} X-\log \operatorname{det} X \\
& \text { sub. to } X s=y
\end{aligned}
$$

with the domain S_{++}^{n}, and $y, s \in R^{n}$ with $s^{T} y=1$. Verify the optimal solution is

$$
X^{*}=I+y y^{T}-\frac{1}{s^{T} s} s s^{T}
$$

6. Let $f_{0}, f_{1}, \ldots, f_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex. Show that the function

$$
p^{*}(u, v)=\inf \left\{f_{0}(x) \mid x \in \mathcal{D}, f_{i}(x) \leq u_{i}, i=1, \ldots, m, A x-b=v\right\}
$$

is convex.

