Mid-Term Exam 1

 If each of the following statements is true, please mark O in the parenthesis. If false or incorrect, mark X and make corrections of the false statement or word in the parenthesis.
1) Two vectors are perpendicular to each other if their cross product is zero and vice versa. ()
2) The basic rules of vector dot and cross products are independent o coordinate system. ()
3) In the deductive approach, electromagnetic theorems and laws are developed from the fundamental postulates for an idealized model, and then verified with experimental observations. ()
4) Maxwell's equations describe the electromagnetic field quantities generated by distributed space sources in a circuit model. ()
5) Coulomb C, which is the unit for charge, is a derived unit expressible in terms of MKSA units as A·s, and its dimension is 71. ()
6) The gradient of a scalar field is a scalar point function. ()
7) If $i=j$, then $\delta_{ij}=1$ and $\epsilon_{ijk}=0$. ()
8) The divergence theorem transforms the surface integral of the divergence of a vector field to a closed line integral of the vector field, and vice versa. ()
9) Helmholtz's theorem states that a vector field is determined if either its divergence or its curl is specified everywhere. ()
10) If a vector field is curl-free, then it can be expressed as the gradient of a scalar field. ()

(20 points)

- 2. Answer the following questions briefly.
 - 1) What are the source quantities and four fundamental field quantities in the electromagnetic model? What are their SI units?
 - 2) Does $A \cdot B = A \cdot C$ imply B = C? Explain and show an example. Does $A \times B = A \times C$ imply B = C? Explain and show an example.
 - 3) Which of the following four scalar triple products has a different magnitude from the others? Explain.

$$(A \times B) \cdot C$$
, $A \cdot (C \times B)$, $(A \times C) \cdot B$, $B \cdot (a_A \times A)$

By using the representations of summation convention and Levi-Civita symbol, prove that the scalar triple product $(A \times B) \cdot C$ can be calculated by the following determinant in Cartesian coordinate system.

$$(m{A} imes m{B}) \cdot m{C} = egin{array}{ccc} A_x & A_y & A_z \ B_x & B_y & B_z \ C_x & C_y & C_z \ \end{array}$$

- 4) What are the metric coefficients in cylindrical coordinates? Write $d\pmb{l},\ d\pmb{s_z},\ dv,\ {\rm and}\ \nabla$ in cylindrical coordinates.
- 5) What is the physical definition of the curl of a vector field A? Show that A is an irrotational field if $A = a_R f(R) \equiv \hat{R} f(R)$ in spherical coordinates, where f(R) is any function of the radial distance R.

(12 points)

- 3. Assuming a vector field expressed in cylindrical coordinates to be $\pmb{A} = \hat{r} \left(3\cos\phi \right) \hat{\phi} \, 2r + \hat{z} \, z.$
 - 1) What is the field at the point $P(4, 60^{\circ}, 1)$?
 - 2) Expressed the field $\boldsymbol{A_P}$ at \boldsymbol{P} in Cartesian coordinates.
 - 3) The cylindrical coordinates of another point Q are: $Q(3, 180^o, -1)$. Determine the distance between the two points P and Q.

(12 points)

- 4. 1) Express the r-component, A_r , of a vector ${\pmb A}$ at the point $P_1(r_1,\,\phi_1,\,z_1)$ in terms of A_R and A_θ in spherical coordinates.
 - 2) Denote the position vector to a point $P_2(x, y, z)$ by \mathbf{R} . Determine $\nabla (1/R)$ in spherical coordinates.
 - 3) Find the divergence of the radial field, $f(\mathbf{R}) = \hat{\mathbf{R}} \ k/R^2$ where k is a constant.

(5 points)

5. Show that $\frac{\partial \hat{r}}{\partial \phi} = \hat{\phi}$ and $\frac{\partial \hat{\phi}}{\partial \phi} = -\hat{r}$ in cylindrical coordinates.

(These relations state that the differentiation of a base vector may lead to a new vector in a different direction in a curvilinear coordinate system)

(16 points)

- 6. Assume a vector field $\mathbf{A} = \hat{\mathbf{x}}(2x+y) \hat{\mathbf{y}}y$.
 - 1) Find $\oint_C A \cdot dl$ around the triangular contour shown in the figure below.
 - 2) Find $\int_S (\nabla \times \mathbf{A}) \cdot d\mathbf{s}$ over the triangular area.
 - 3) Verify the Stokes's theorem by using the results of 1) and 2).
 - 4) Can $oldsymbol{A}$ be expressed as the gradient of a scalar? Explan.

