Mid-Term Exam 2

(30 points)

- 1. Answer the following questions.
 - 1) Write the integral form of the fundamental postulates of electrostatics in a dielectric medium, and state their meaning in words. In this case, explain why the electric field intensity is a conservative field and how it can be obtained from a scalar potential V.
 - 2) What are the general boundary conditions for E, D and J under steady conditions at an interface between an insulator (ϵ_1 , $\sigma_1 = 0$) and a lossy dielectric medium (ϵ_2 , $\sigma_2 = finite$)?
 - 3) Describe the ways in which the electric potential distribution varies with distance from a positively-charged test particle (q) in a plasma in comparison with the electric potential produced by an isolated positive point charge (q) in free space.
 - 4) For the method of images, draw the images of a straight line current I located at an equidistance d from two grounded perpendicular conducting half-planes?
 - 5) What is the relation between mobility and resistivity in a conductor? Explain how both mobility and resistivity are dependent on the collision frequency between free electron and lattice atoms in the conductor.

(15 points)

- 2. Solve the following problems for a parallel-plate capacitor of which the two conducting plates are 50 (mm) apart:
 - 1) Find the breakdown voltage if the medium between the conducting plates is air, which has a dielectric strength 3 (kV/mm).
 - 2) Find the breakdown voltage if the entire space between the conducting plates is filled with plexiglass, which has a dielectric constant 3 and a dielectric strength 20 (kV/mm).
 - 3) If a 10-(mm) thick plexiglass is inserted between the two plates, what is the maximum voltage that can be applied to the two plates without a breakdown?

(20 points)

- 3. Two infinitely long coaxial cylindrical surfaces, r=a and r=b (b>a), carry surface charge densities ρ_{sa} and ρ_{sb} , respectively.
 - 1) Determine E(r) everywhere (r < a, a < r < b, and <math>r > b) by applying Gauss's law.
 - 2) Show that $\frac{b}{a} = -\frac{\rho_{sa}}{\rho_{sb}}$ in order that ${\pmb E}$ vanishes for r > b.

(15 points)

4. Consider a parallel-plate capacitor of area S and separation d charged to a voltage V as shown in the figure. The permitivity and conductivity of the lossy dielectric are ϵ and σ , respectively.

- 1) Find the capacitance C by using the relation $V = -\int_0^d \mathbf{E} \cdot d\mathbf{l}$ and the boundary condition for the normal component of \mathbf{D} at the electrode-dielectric interface.
- 2) Find the electrostatic energy W_e stored in the capacitor in terms of C by deriving from the electrostatic energy density $w_e = \mathbf{D} \cdot \mathbf{E}/2 = \epsilon E^2/2$.
- 3) Find the resistance R between the two electrodes by using the capacitance C obtained from the above problem 1).

(20 points)

- 5. Consider a spherical shell between two concentric spherical surfaces of radii R_i and R_o ($R_i < R_o$). The space between the surfaces is filled with a homogeneous and isotropic medium having a conductivity σ .
 - 1) Set up a boundary-value problem for V and find V(R) for $R_i \leq R \leq R_o$.

- 2) Find the electric current density J(R) for $R_i \leq R \leq R_o$.
- 3) Find the resistance between the two spherical surfaces.