SIGNAL and SYSTEMS 

April 18, 2009
(Instructor : In-Joong Ha, Professor)

EXAM I
[Problem 1] (20 Points) The output 
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of a second-order system produced by the input 
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is given by
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where 
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is the unit step, while the exponential parameter 
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and the frequency parameter 
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are both real. Then, show that the impulse response of the system is given by
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[Problem 2] (20 Points) Consider a discrete-time LTI system with the unit impulse response
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where 
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(a) Show that the above system is BIBO stable.

(b) Show that the step response of the above system is given by
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(c) Determine the steady-state response of the above system.
[Problem 3] (20 Points) (a) Strictly speaking, the following general Nth-order linear constant-coefficient ODE cannot be used to represent a causal system S. Explain why.
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(b) Find the general Nth-order linear constant-coefficient ODE for 
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which can represent legally a causal system but which gives the same input-output transfer function as the above ODE.

(c) Draw the block diagram representation of the Nth-order linear constant-coefficient ODE you have found in (b).
(d) The Nth-order linear constant-coefficient ODE you have found in (b) is not a causal system if 
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. Explain why.
[Problem 4] (20 Points) Let 
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 be two periodic signals with common period
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.  Let



[image: image17.wmf][][][]

rN

znxrynr

=<>

=-

å


(4.1)

be their periodic convolution.

(a) Show that 
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 is also periodic with period 
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.
(b) Verify that if 
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are the Fourier coefficients of 
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(c) Let 
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and
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be two signals that are periodic with period 8. Find the Fourier series representation of the periodic convolution of these signals.

[Problem 5] (20 Points) The representation of a periodic signal by the Fourier series or, more generally, as the linear combination of orthogonal functions in a set is computationally efficient and, in fact, very useful for obtaining good approximations of signals.

 Specifically, let 
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be a set of orthonormal functions on the interval 
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. Let 
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 be a given signal.  Consider the following approximation of 
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Here, the 
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 are complex number. To measure the deviation between 
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A reasonable and widely used criterion for measuring the quality of the approximation is the energy in the error signal over the interval of interest. That is, the integral of the square of the magnitude of the error over the interval 
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(a) Define 
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Then, equation (5.5) can be represented in the following form 
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Equation (5.9) is strictly convex if and only if the matrix
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is positive definite. (Matrix 
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is positive definite if and only if all of its eigenvalues are positive). Any local minimum of 
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(b) Show that E is minimized by choosing
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(c) The set of Walsh functions is and often-used set of orthonormal functions. The set of five Walsh functions, 
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, is illustrated in Fig.5, where we have scaled time so that the 
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such that
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is minimized.

(d) Show that 
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and 
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are orthogonal if the 
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are chosen as in eq. (5.10).
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< Fig. 5>
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