

(1/2) Check if your name and ID are written or correct.

Midterm Exam.	Subject	Professor	Student ID#	Student Name	Score
Date: 2009.10.21	Microelectronics 2	Jong-Ho Lee			
3. Assume that the MOSFETs $(M_1 \text{ and } M_2)$ $V_{}$			4. For the following cascade stage, answer for the following questions.		

have the same output resistance r_0 (λ >0). Load capacitance C_L is connected to output. Neglect other capacitances. M_1 and M_2 are n- and p-type MOSFETs, respectively. Answer for the following questions. (8)

(a) Assume that there is a capacitance ($C_{\rm F}$) between the gate and the drain of M_1 . By using Miller theorem, calculate the input and output capacitances. (3)

(b) Estimate the -3 dB bandwidth in (a) as the r_0 goes to infinite (λ =0). Here assume that there is a finite input resistance connected with V_{in} in series. (2)

(c) Assume that V_{in} and V_b are exchanged. That is to say, V_{in} is connected to the gate of M_2 and V_b is connected to the gate of M_1 . Compute voltage gain at low frequency. (3)

Answer)

(a) low frequency gain,
$$A_v = -g_m(r_o \parallel r_o) = -\frac{g_m}{2}$$

Using Miller's Theorem,

$$C_{F,in} = (1 + \frac{g_m r_o}{2})C_F$$
$$C_{F,out} = (1 + \frac{2}{g_m r_o})C_F + C_L$$

(**b**) $r_o = \infty$, a finite input resistance = R_s

Since $C_{F,in}$ is infinite, the input pole is zero $(w_{pin} = 1/R_s C_{F,in} = 0)$. The output pole is also zero because r_0 is infinite. $(W_{p,out} = 1/(r_0/2)(C_L + C_{F,out}) = 0)$ $\therefore BW \cong 0$

(c)

Including the impedance of $C_L(\frac{1}{iwC_L})$,

$$R_{out} = r_o \parallel r_o \parallel \frac{1}{jwC_L}$$

So the gain of the circuit is $-g_m(r_o || r_o || \frac{1}{jwC_r})$.

At a low frequency, we can ignore C_L (opened).

$$\therefore \quad A_v = -g_m \frac{r_o}{2}$$

4. For the following cascade stage, answer for the following questions. Assume $\gamma_n = \lambda_n = 0$. (20)

(a) Describe briefly key features of the amplifier. (5)
(b). Derive an expression for low frequency small signal voltage gain between nodes *A* and *X*. (5)
(c) Using Miller theorem, derive expressions of capacitances at nodes *A* and *X*. (5)
(d) Suppose a resistor *R*_G appears in series with

the gate of M₂. Including

only C_{GS2} , neglecting

other capacitances, determine the transfer function (5)

Answer)

(a) Compared with the Miller approximation results obtained in CS stage, the input pole has risen considerably and hence the cascode band width is larger.

(b) A low frequency gain from A to X is

$$A_{v} = -\frac{g_{m1}}{g_{m2}} \quad (r_{o1}, r_{o2} = \infty)$$

(c)
$$C_A = C_{GS1} + (1 + \frac{g_{m1}}{g_{m2}})C_{GD1}$$

 $C_X = C_{DB1} + C_{GS2} + (1 + \frac{g_{m2}}{g_{m1}})C_{GD1} + C_{SB2}$

(**d**)

(2/2) Check if your name and ID are written or correct.

Fig. 1

