Linear Algebra (Eng. Math. 3) Midterm Exam. 2006 Fall

1. ($\pm 30 \mathrm{pts})$ For the following questions, you just need to answer by TRUE or FALSE, or by a short answer. NOTE THAT the correct answer gets the point, but the wrong answer will get MINUS points!
(a) ($\pm 3 \mathrm{pts})$ A subset of a linearly dependent vector set is linearly dependent. (T/F)
(b) ($\pm 3 \mathrm{pts})$ If the columns of $A B$ are linearly independent, then so are the columns of B. $(\mathrm{T} / \mathrm{F})$
(c) ($\pm 3 \mathrm{pts})$ When P is a projection matrix, $\left(I-P^{T}\right)$ is also a projection matrix. (T/F)
(d) (\pm 3pts) If $\operatorname{dim}(V)=n$, then any spanning set consisting of n vectors in V is a basis of V. (T/F)
(e) (± 3 pts) If S_{1} and S_{2} are subsets of a vector space V such that $S_{1} \not \subset S_{2}$, then $\operatorname{span}\left(S_{1}\right) \not \subset \operatorname{span}\left(S_{2}\right) .(\mathrm{T} / \mathrm{F})$
(f) ($\pm 3 \mathrm{pts})$ If there is a solution x to $A x=b$, then the vector b must be perpendicular to every vector y in $\mathcal{N}\left(A^{T}\right)$. (T/F)
(g) ($\pm 3 \mathrm{pts})$ If $\operatorname{det} A=0$ then at least one of the cofactors must be zero. (T/F)
(h) $(\pm 3 \mathrm{pts})$ If $A=A^{2}$, then $\operatorname{det}(A)$ is either 0 or 1 . (T/F)
(i) $(\pm 3 \mathrm{pts})$ Consider a 4×4 matrix

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right] .
$$

Which term in the following appears in the calculation of $\operatorname{det}(A)$? Choose as many as possible.

$$
\begin{array}{ll}
A: a_{13} a_{24} a_{33} a_{42}, & B: a_{41} a_{12} a_{33} a_{34}, \\
C: a_{11} a_{21} a_{31} a_{41}, & D: a_{14} a_{23} a_{31} a_{42} .
\end{array}
$$

(j) ($\pm 3 \mathrm{pts}$) Suppose the only solution to $A x=0$ (m equations in n unknowns) is $x=0$. What is the rank of A ?
2. (10pts) Let A and b be given by

$$
A=\left[\begin{array}{cc}
1 & 1 \\
2 & -1 \\
-2 & 4
\end{array}\right], \quad b=\left[\begin{array}{l}
1 \\
2 \\
7
\end{array}\right] .
$$

Find p and q such that $b=p+q$, with p in the column space of A and q perpendicular to that space. Also, answer which of the four fundamental spaces of A contains q.
3. (10 pts) Let W be the subspace of \mathbb{R}^{4} spanned by

$$
w_{1}=\left[\begin{array}{c}
1 \\
-3 \\
0 \\
5
\end{array}\right], \quad w_{2}=\left[\begin{array}{c}
-1 \\
1 \\
-2 \\
3
\end{array}\right], \quad w_{3}=\left[\begin{array}{c}
0 \\
-1 \\
-1 \\
5
\end{array}\right]
$$

Find a basis for W^{\perp}.
4. (10pts) The space of all 2×2 matrices has the four basis "vectors"

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Consider the linear transformation of transposing every 2 by 2 matrix, and find the matrix A representing this transformation with respect to the above basis.
5. (10pts) Factor

$$
\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & 0
\end{array}\right)
$$

into $Q R$. (QR-Decomposition)
6. (10pts) For an $n \times n$ square matrix S, the 'trace' is defined by

$$
\operatorname{trace}(S)=\sum_{i=1}^{n} S_{i, i}
$$

For two matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times m}$, prove or disprove that $\operatorname{trace}(A B)=$ $\operatorname{trace}(B A)$.
7. (10pts) Prove or disprove that a linear transformation $T(x)=A x$ is one-to-one if $\mathcal{N}(A)=\{0\}$.
8. (10pts) Suppose that P is a projection matrix onto the subspace

$$
\mathcal{S}=\operatorname{span}\left\{\left[\begin{array}{c}
16.07 \\
\log (27) \\
-4 \\
\sqrt{13}
\end{array}\right],\left[\begin{array}{c}
2 \\
15 \\
0 \\
\sinh (6)
\end{array}\right]\right\},
$$

and Q is the projection matrix onto the orthogonal complement \mathcal{S}^{\perp}. What are $P+Q$ and $P Q$?
"Trust what you know."

