Linear Algebra (Eng. Math. 3) Final Exam. 2006 Fall

1. ($\pm 15 \mathrm{pts})$ Answer by TRUE or FALSE for the following questions with a very short proof or explanation, or a counterexample. NOTE THAT the correct answer gets the point, but the wrong answer will get MINUS points.
(a) $(\pm 3 \mathrm{pts})$ There is no square matrix A such that A and $A+I$ are similar to each other. (T/F)
(b) ($\pm 3 \mathrm{pts})$ Singular matrices are not diagonalizable. (T/F)
(c) ($\pm 3 \mathrm{pts})$ Sum of two positive definite matrices is positive definite. (T/F)
(d) $(\pm 3 \mathrm{pts})$ If A is skew-symmetric, then e^{A} is orthogonal. (T / F)
(e) $(\pm 3 \mathrm{pts})$ A square matrix A is invertible if and only if $A^{T} A$ is invertible. (T/F)
2. (10pts) Using the singular value decomposition, find the pseudoinverse A^{\dagger} of A given by

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]
$$

3. (a) (10pts) Find a positive definite symmetric square root, \sqrt{M}, of M given by

$$
M=\left[\begin{array}{ll}
5 & 4 \\
4 & 5
\end{array}\right]
$$

(b) (10pts) Let

$$
F(x)=\frac{2 x_{1}^{2}+2 x_{2}^{2}}{5 x_{1}^{2}+8 x_{1} x_{2}+5 x_{2}^{2}}
$$

which is defined for all non-zero $x=\left(x_{1}, x_{2}\right)$. Find the minimum value of $F(x)$.
4. (10pts) Let a mapping T is an identity transformation; that is, $T(x)=x$ for all $x \in \mathbb{R}^{2}$. Find the corresponding matrix A, if the basis for the domain is $v_{1}=(1,2), v_{2}=(3,4)$ and the basis for the image is $w_{1}=(1,0)$ and $w_{2}=(0,1)$. (What you are doing is changing the basis.)
5. (10pts) By solving the following difference equation

$$
\begin{aligned}
x(k+1) & =0.9 x(k)+0.2 y(k), & & x(0)=0.5 \\
y(k+1) & =0.1 x(k)+0.8 y(k), & & y(0)=0.5
\end{aligned}
$$

find $x(k)$ and $y(k)$. What are $x(\infty)$ and $y(\infty) ?$
6. (a) (10pts) Find the characteristic polynomial, $\operatorname{det}(s I-A)$, of the following $A \in \mathbb{R}^{n \times n}$:

$$
A=\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1 \\
-a_{0} & -a_{1} & -a_{2} & -a_{3} & \cdots & -a_{n-1}
\end{array}\right]
$$

(b) (10pts) Let

$$
B=\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1 \\
-b_{0} & -b_{1} & -b_{2} & -b_{3} & \cdots & -b_{n-1}
\end{array}\right] .
$$

Find the characteristic polynomial of

$$
\left[\begin{array}{cc}
A-2 B & 2 B \\
-B & A+B
\end{array}\right]
$$

7. (15pts) I wanted to find the Jordan form of

$$
A=\left[\begin{array}{cccc}
1 & 1 & -1 & 1 \\
0 & 1 & 1 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

which has multiple eigenvalues of 1 . So, I tried to find eigenvectors, but only two are obtained as

$$
x_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right], \quad x_{2}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right] .
$$

With the two, can you find the Jordan matrix J and the nonsingular matrix P such that $P^{-1} A P=J$?

