Linear Algebra (Eng. Math. 3) Final Exam. 2006 Fall

- 1. $(\pm 15 \text{pts})$ Answer by TRUE or FALSE for the following questions with a very short proof or explanation, or a counterexample. NOTE THAT the correct answer gets the point, but the wrong answer will get MINUS points.
 - (a) (± 3 pts) There is no square matrix A such that A and A + I are similar to each other. (T/F)
 - (b) $(\pm 3 \text{ pts})$ Singular matrices are not diagonalizable. (T/F)
 - (c) $(\pm 3 \text{pts})$ Sum of two positive definite matrices is positive definite. (T/F)
 - (d) (± 3 pts) If A is skew-symmetric, then e^A is orthogonal. (T/F)
 - (e) (± 3 pts) A square matrix A is invertible if and only if $A^T A$ is invertible. (T/F)
- 2. (10pts) Using the singular value decomposition, find the pseudoinverse A^{\dagger} of A given by

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}.$$

3. (a) (10pts) Find a positive definite symmetric square root, \sqrt{M} , of M given by

$$M = \begin{bmatrix} 5 & 4\\ 4 & 5 \end{bmatrix}$$

(b) (10 pts) Let

$$F(x) = \frac{2x_1^2 + 2x_2^2}{5x_1^2 + 8x_1x_2 + 5x_2^2},$$

which is defined for all non-zero $x = (x_1, x_2)$. Find the minimum value of F(x).

- 4. (10pts) Let a mapping T is an identity transformation; that is, T(x) = x for all $x \in \mathbb{R}^2$. Find the corresponding matrix A, if the basis for the domain is $v_1 = (1, 2), v_2 = (3, 4)$ and the basis for the image is $w_1 = (1, 0)$ and $w_2 = (0, 1)$. (What you are doing is changing the basis.)
- 5. (10pts) By solving the following difference equation

$$\begin{aligned} x(k+1) &= 0.9x(k) + 0.2y(k), & x(0) = 0.5, \\ y(k+1) &= 0.1x(k) + 0.8y(k), & y(0) = 0.5, \end{aligned}$$

find x(k) and y(k). What are $x(\infty)$ and $y(\infty)$?

6. (a) (10pts) Find the characteristic polynomial, $\det(sI - A)$, of the following $A \in \mathbb{R}^{n \times n}$:

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 \\ -a_0 & -a_1 & -a_2 & -a_3 & \cdots & -a_{n-1} \end{bmatrix}.$$

(b) (10 pts) Let

$$B = \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 \\ -b_0 & -b_1 & -b_2 & -b_3 & \cdots & -b_{n-1} \end{bmatrix}.$$

Find the characteristic polynomial of

$$\begin{bmatrix} A-2B & 2B \\ -B & A+B \end{bmatrix}.$$

7. (15pts) I wanted to find the Jordan form of

$$A = \begin{bmatrix} 1 & 1 & -1 & 1 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

which has multiple eigenvalues of 1. So, I tried to find eigenvectors, but only two are obtained as

$$x_1 = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \qquad x_2 = \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix}.$$

With the two, can you find the Jordan matrix J and the nonsingular matrix P such that $P^{-1}AP = J$?