Linear Algebra (Eng. Math. 3) Midterm Exam. 2006 Fall

Questions 1-7 have 10 points each.

1. Find all values of k for which

$$
A=\left[\begin{array}{ccc}
k & -k & 3 \\
0 & k+1 & 1 \\
k & -8 & k-1
\end{array}\right]
$$

is invertible.
2. Find four fundamental subspaces (column, null, row, and left-null spaces) of a matrix

$$
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 3 \\
1 & 1
\end{array}\right]
$$

Express the vector $x=[7,8]^{T}$ as the sum of two vectors that belong to two of the four fundamental subspaces respectively.
3. Get a projection matrix P that projects a vector onto the column space of

$$
A=\left[\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right]
$$

4. Let $A=[3,1,-1]$, and let V be the nullspace of A. Find a basis for V and a basis for V^{\perp}. Find an orthonormal basis for V if your basis for V is not orthonormal.
5. Find all solutions $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ satisfying the following linear equations

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}+x_{4} & =1 \\
x_{1}+x_{2} & =1 \\
x_{2}+x_{3} & =0 \\
x_{3}+x_{4} & =0 \\
x_{1}+x_{4} & =1 .
\end{aligned}
$$

Also, write down every solution x that consists of $-1,0$ or 1 as its entry.
6. Consider a linear transformation T, from a set of cubic polynomial P_{3} to a set of fourth-degree polynomials P_{4}, that is a multiplication of $(2+3 t)$ to a cubic polynomial. Taking the basis $\left\{1, t, t^{2}, t^{3}\right\}$ for P_{3} and $\left\{1, t, t^{2}, t^{3}, t^{4}\right\}$ for P_{4}, find a matrix A that represents the transformation T.
7. If you know all 16 cofactors of a 4×4 invertible matrix A, how would you find A ? (Hint: First of all, can you find $\operatorname{det} A$?)
8. (30pts) Answer by TRUE or FALSE for each of the following problems. You will get 3 points for each question if you write the correct answer with a correct explanation (which can be very short). No answer will get 0 point, but we will get -3 points if you give a wrong answer.
(a) $(\mathrm{T} / \mathrm{F})$ If A is invertible then $A^{T} A$ is invertible.
(b) (T / F) Let T be a one-to-one linear transformation from a vector space V to another W. If the vectors v_{1}, \cdots, v_{k} in V are linearly independent, then $T\left(v_{1}\right), \cdots, T\left(v_{k}\right)$ are also linearly independent in W.
(c) $(\mathrm{T} / \mathrm{F})$ If $\operatorname{dim}(V)=n$, then any spanning set consisting of n vectors in V is a basis of V.
(d) (T/F) If S_{1} and S_{2} are subsets of a vector space V such that $S_{1} \not \subset S_{2}$, then $\operatorname{span}\left(S_{1}\right) \not \subset \operatorname{span}\left(S_{2}\right)$.
(e) (T/F) Suppose that a subspace V has a basis $\left\{v_{1}, v_{2}, v_{3}\right\}$. If a vector $w \neq 0$ is orthogonal to V, the vectors of $\left\{w, v_{1}, v_{2}, v_{3}\right\}$ are linearly independent.
(f) $(\mathrm{T} / \mathrm{F})$ If the columns of $A B$ are linearly independent, then so are the columns of B.
(g) (T/F) If V is orthogonal to W, then V^{\perp} is orthogonal to W^{\perp}.
(h) $(\mathrm{T} / \mathrm{F})$ If P_{C} is a projection matrix that projects a vector onto the column space of A, the projection matrix that projects onto the row space of A is P_{C}^{T}.
(i) $(\mathrm{T} / \mathrm{F})$ For any square matrix A, which one is correct?

$$
(\mathrm{T}): \operatorname{nullity}(A) \leq \operatorname{nullity}\left(A^{2}\right) \quad(\mathrm{F}): \operatorname{nullity}(A) \geq \operatorname{nullity}\left(A^{2}\right)
$$

(j) (T/F) Which one is the Vandermonde matrix?

$$
T=\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 2 & 4 \\
1 & 1 & 1
\end{array}\right] \quad \text { or } \quad F=\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 3 & 6 \\
1 & 1 & 1
\end{array}\right]
$$

