## Linear Algebra (Eng. Math. 3) Final Exam. 2007 Spring

1. (10pts) Suppose a symmetric matrix $A \in \mathbb{R}^{3 \times 3}$ has eigenvectors $u$, $v$, and $w$ corresponding to its eigenvalues 0,1 , and 2 , respectively. In term of $u, v, w$, describe the nullspace, left nullspace, row space, and column space of $A$.
2. (10pts) Prove that all the eigenvalues for a skew-Hermitian matrix are pure imaginary.
3. (10pts) Prove that $\operatorname{det}\left(e^{A}\right)=e^{\operatorname{trace}(A)}$ where $A \in \mathbb{R}^{n \times n}$ has $n$ independent eigenvectors.
4. (10pts) Suppose that $A^{T} P+P A=-I$ with a positive definite matrix $P$ and a real matrix $A$. Prove that all the eigenvalues of $A$ have negative real part.
5. (10pts) For a matrix

$$
A=\left[\begin{array}{ccc}
1 & 2 & 1 \\
1 & 2 & -1
\end{array}\right]
$$

find its norm $\|A\|$, and a vector $x$ such that $\|A x\|=\|A\|\|x\|$.
6. (10pts) Consider a function $F(x, y)=\left(x^{2}-2 x\right) \cos y$. State the type of the point $(x, y)=(1, \pi)$ among a minimum, a maximum, or a saddle.
7. (10pts) Solve the solution of the following differential equation

$$
\frac{d u}{d t}(t)=A u(t), \quad u(0)=u_{0},
$$

where

$$
A=\left[\begin{array}{ccc}
-1 & -2 & 1 \\
1 & -4 & 1 \\
1 & -2 & -1
\end{array}\right]
$$

by finding $e^{A t}$. Note that $A$ has three eigenvalues, all of which are -2 .
8. (30pts) Answer by TRUE or FALSE for each of the following problems. You will get 3 points for each question if you write the correct answer with a correct explanation (which can be very short). No answer will get 0 point, but you will get -3 points if you give a wrong answer.
(a) (T/F) If $M^{-1} H M=-H$ for an invertible $M$, then $H$ has symmetric eigenvalues (that is, if $\lambda$ is an eigenvalue of $H$ then $-\lambda$ is also an eigenvalue of $H$ ).
(b) (T/F) If $A$ and $B$ are diagonalizable, so is $A B$.
(c) (T/F) If eigenvectors $x$ and $y$ correspond to distinct eigenvalues, then $x^{H} y=0$.
(d) $(\mathrm{T} / \mathrm{F}) A$ and $A+I$ cannot be similar for every matrix $A$.
(e) (T/F) When $A$ is invertible, $A$ and $A^{-1}$ have the same eigenvectors.
(f) (T/F) Hermitian, skew-Hermitian, and unitary matrices are normal matrices.
(g) (T/F) If $\lambda$ is any eigenvalue of $A$, then $|\lambda| \leq\|A\|$.
(h) (T/F) For any matrix $A \in \mathbb{R}^{m \times n},\|A\|=\left\|A^{T}\right\|$.
(i) (T/F) The only positive definite projection matrix is $P=I$.
(j) (T/F) The pseudoinverse of 2 by 2 zero matrix is 2 by 2 zero matrix.
9. (Problem for Repeat Takers; 10pts) For a real symmetric matrix $A$ and a positive definite matrix $P$, prove that $P A$ is diagonalizable and all eigenvalues are real.

