(25점)

- 1. Choose a correct answer to each question by the corresponding number.
 - a) Which is the time-average electromagnetic power flow per unit area?

① $E \times \mathbf{H}$ ② $\frac{1}{2}Re[\{\mathbf{E}(z)\times\mathbf{H}(z)\}e^{j\omega t}]$ ③ $\frac{1}{2}Re[\mathbf{E}\times\mathbf{H}^*]$ ④ $\oint_{C}\mathbf{E}\times\mathbf{H}\cdot d\mathbf{s}$

b) Which is incorrect for the reflection coefficient Γ_{\perp} in an oblique incident of plane electric wave with perpendicular polarization?

① $E_{ro} = \Gamma_{\perp} E_{io}$ ② $|\Gamma_{\perp}| = 1$ for total internal reflection.

③ $1 + \Gamma_{\perp} = \tau_{\perp}$ ④ $|\Gamma_{\perp}| = 0$ at any incident angle for nonmagnetic media $(\mu_1 = \mu_2)$.

c) Which is *incorrect* for *electromagnetic wave* propagation in a medium?

① E and H of a TEM wave in a given medium must satisfy Maxwell's equations, and their amplitudes and phases can be specified independently.

2 Electromagnetic waves of all frequencies propagate in a lossless medium with the same velocity, and E and H are in phase.

H thus have different time phases.

④ Wavenumber depends on medium characteristics as well as the wave frequency, but is always equal to $2\pi/\lambda$.

d) Which is <u>not</u> for the time-harmonic responses of an inductor to $i(t) = I\cos\omega t$ $= Re[Ie^{j\omega t}]$?

① $v(t) = L\frac{di}{dt}$ ② $v(t) = \frac{1}{\omega L}I\sin\omega t$ ③ $p = \frac{1}{2}L\frac{di^2}{dt}$ ④ $E = \frac{1}{2}LI^2$

e) Which is <u>not</u> for the relationship between sources and fields?

f) Which is incorrect for a 1-D uniform plane wave, $\mathbf{E}(z,t) = \hat{\mathbf{x}} \operatorname{Re}\left[E_o j e^{j(\omega t - kz)}\right]$?

① This wave leads by $\pi/4$ ahead of a reference wave, $E_x(z,t) = E_o \cos(\omega t - kz)$.

② This wave satisfies the relation, $k \cdot E = 0$.

③ This wave is travelling backward along the z-direction with an amplitude of E_o .

① The phase velocity u_p is found by $u_p = \omega/k$

g) Which is incorrect for the circularly polarized waves, which are given by $\mathbf{E}(z,t) = \hat{\mathbf{x}} E_{xo} \cos(\omega t - kz) + \hat{\mathbf{y}} E_{uo} \cos(\omega t - kz + \delta)?$

① $E_{xo} = E_{yo}$

② $E_x = E_o \cos \omega t$ & $E_y = \pm E_o \sin \omega t$ at z = 0

 $3 \delta = \pm \pi$

① $jE_r/E_u = \mp 1$

- h) Which is <u>incorrect</u> for the TEM wave propagation in lossy media with good conductivity $(\tan \delta_c \gg 10^2)$?
 - (1) $\alpha = \beta \cong \sqrt{\pi f \mu \sigma}$

- ② Skin depth is inversely proportional to \sqrt{f} .
- (3) H(z) lags behind E(z) by $\pi/4$ (4) The wavelength λ is longer than that in air.
- i) Which is *incorrect* for an *oblique incident* of plane electric wave with parallel polarization?
 - ① There exists Brewster angle θ_B of no reflection.
 - ② Both Snell's laws are applicable.
- ① $\Gamma_{\parallel}=0$ at certain incident angle for two nonmagnetic media whether $\epsilon_1<\epsilon_2$ or $\epsilon_1 > \epsilon_2$.
- j) Which is not related with waves in plasmas?
 - ① Plasma oscillations ($\omega^2 = \omega_p^2$) are electrostatic logitudianl waves.
 - ② The refractive index of TEM waves in plasmas is larger than 1.
 - 3 The TEM waves with frequency higher than the plasma frequency can only propagate through plasmas.
 - ① The phase velocity of TEM wave is always faster than c (speed of light).

(15점)

- 2. For source-free($\rho_v = 0$) lossy ($\sigma \neq 0$) medium,
 - a) Derive the vector wave equation for H from Maxwell's equations and Ohm's law($\mathbf{j} = \sigma \mathbf{E}$).
 - b) Derive the Helmholtz's equation for time-harmonic H fields.
 - c) Find the electric phasor E_s in terms of H_s and intrinsic impedance η_c from Maxwell's equations.

(10점)

3. Given that the electric field intensity of a uniform plane wave in a nonconducting dielectric medium with $\epsilon = 9\epsilon_o$ and $\mu = \mu_o$ is

$$\mathbf{E}(z,t) = \hat{y} E_o \cos(\omega t - kz + \psi) \quad \text{(V/m)},$$

- a) determine k, E_o and ψ by assuming that E_y has a frequency 1 GHz and a maximum value of 5 (V/m) at t=0 and z=1 (m), and
- b) find the magnetic field intensity H(z,t).

[Note:
$$\eta_o = \sqrt{\mu_o/\epsilon_o} = 120\pi$$
 (Ω)]

(20점)

- 4. A uniform plane wave propagates in the +z-direction into a conducting plate $(\epsilon_r = 36\pi, \ \mu_r = 1, \ \sigma = 20 \ S/m)$. The magnetic field at the conducting plate surface (z=0) is $\mathbf{H}(0,t) = \hat{\mathbf{y}} \ 10 \cos{(10^8 t)} \ (\text{A/m})$.
 - a) Determine the skin depth $(\delta=1/\sqrt{\pi f\mu\sigma})$ and the intrinsic impedance $[\eta_c\approx\sqrt{\pi f\mu/\sigma}~(1+j)]$ of the conducting plate. [Note: $\epsilon_o=10^{-9}/36\pi~(F/m)$ and $\mu_o=4\pi\times10^{-7}~(H/m)$]
 - b) Find the expression of H(z,t) and E(z,t) in the conducting plate.
 - c) Find the average power loss per unit area in the conducting plate as a function of z.

(10점)

5. For a cladded-core optical fiber as shown in the figure below $(n_2 < n_1)$,

express the maximum angle of incidence θ_a in terms of n_o , n_1 , and n_2 for the rays incident on the fiber axis at the core's end face to be trapped inside the core by total internal reflection.

(20점)

- 6. Answer each of the following questions in detail.
 - a) Explain the relationships between electromagnetic potential functions and electromagnetic fields.
 - b) What is meant by *Poynting's theorem*? How can you derive this theorem from Maxwell's equations?
 - c) Compare the 1-D homogeneous *Helmholtz's equations for lossless and lossy media*, and discuss the *characteristics of TEM wave propagation* by comparing the propagation constants for lossless and lossy media.
 - d) Discuss the characteristics of TEM wave propagation *in plasmas* compared with those in air.