465.211 Mechanics in Energy Resources Engineering, Spring 2010

Final Exam
08:30 - 11:00 14 June 2010
* Be careful about the units that you use.

* You may use Korean or English in answering the questions.

1. Indicate T(true) or F(false) for the following statements. Note that an incorrect answer

receives -1 mark while a correct answer receives +1 mark. You may leave the question blank if
you wish. ()

(1) The strain energy of a structure supporting more than one load can be obtained by adding the
strain energies for the individual loads acting separately. (F)

(2) In a circular bar in torsion, a stress element oriented at an angle of 45 degree is acted upon by
equal tensile and compressive stresses in perpendicular directions without any shear stresses (T)

(3) The maximum shear stress is equal to one-half the difference of the principal stresses. (T)

(4) The shear stresses are always zero on the principal planes. (T)

(5) In linearly elastic isotropic materials, there are three independent material properties, namely,

elastic modulus (E), shear modulus (G) and Poisson's ratio (v). (F)
2.

(a) Explain what the Mohr's Circle is. Give an example if necessary. (10)
(b) Derive the following differential equations of the deflection curve (10).
dv_M

dx> El

(c) Derive the Transformation equations for plane stress as show in the below. (10)
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3. The rails of a railroad track are welded together at their ends (to form continuous rails and thus

eliminate the clacking sound of the wheels) when the temperature is 10°C. What compressive

stress produced in the rails when they are heated by the sun to 52°C if the coefficient of thermal

coefficient is 12 x 10 /°C and the modulus of elasticity is 200 GPa. Consider one-dimensional
stress and strain only. (10)
The rail is prevented from expanding because of their AT = 52°C — 10°C = 42°C

great length and lack of expansion joints.
o = Ea(AT)

= (200 GPa)(12 X 107%/°C)(42°C)
= 100.8 MPa < (compression)

Therefore, the rail is in the same condition as a bar
with fixed ends (see Example 2-7).

The compressive stress in the rails may be calculated
from Eq. (2-18).

4. An element in plane stress is subjected to stresses ox = 50 MPa, o, = 30 MPa, and 1y, = 20
MPa, as shown in the figure. Determine the principal stresses, principal angles and maximum
shear stress. Show the principal stresses on a sketch of a properly oriented element. What is the
stresses acting on an element oriented at an angle 6 =45° from the X axis, where the angle 0 is

positive when counterclockwise. (10)
T 30 MPa
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5. An element in biaxial stress is subjected to stresses ox = 29 MPa and oy = 57 MPa, as shown
in the figure. Using Mohr’s circle, determine: (10)

(a) The stresses acting on an element oriented at a slope of 1 on 2.5 (see figure).
(b) The maximum shear stresses and associated normal stresses.

Show all results on sketches of properly oriented elements.
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1 o
ST — 21 R01° < N 90 .
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20 = 43603 R=——-—— R=430MPa Tmax = R Ty = 43.0 MPa —
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6. A magnesium plate in biaxial stress is subjected to tensile stresses 6x =24 MPa and o, =12
MPa (see figure). The rectangular plate is of dimensions 200 mm (horizontal) x 100 mm
(vertical) x 10 mm (thickness). The corresponding strains in the plate are &, = 440 x 10° and gy
= 80 x 10°. Determine Poisson’s ratio and the modulus of elasticity E for the material. What is
the strain energy density and strain energy stored in the plate? (10)
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7. A cantilever beam of rectangular cross section is subjected to a concentrated load P = 70 kN
acting at the free end (see figure). The beam has width b = 100 mm and height h = 250 mm.
Point A is located at distance ¢ = 600 mm from the free end and distance d = 75 mm from the
bottom of the beam. Calculate the principal stresses 6, and 6, and the maximum shear stress Tpax
at point A. Show these stresses on sketches of properly oriented elements. (15)
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0 =0bd (5 - 5) 0 = 656250 mm T e
70 kN)(656250 mm? :
po TOKNX ) s 16.9 MPa / 9=782°
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PRINCIPAL STRESSES 24.0 MPa
26 ] 0.4377 / ™
iz 2 = — = —().43
m( p) or — oy



oy = —16.9 Mpa — Opp = —11.82° — y

MAXIMUM SHEAR STRESS

o i
o 5Y, 5 8.80 MPa
Tmax = 4 T Tiy Tmax — 8.80 MPa — -8.07 MPa / / A A g5
|
By = B,y — 45° \—8.07 MPa)
X

f51 = 32.2° and Ty, = 8.80 MPa —

By, = 6 + 907 /\

By = 123.2° and 7= —8.80 MPa —
[y s
Tavg = P - Oyg = —8.07 MPa «—

8. The hollow drill pipe for an oil well (see figure) is 150 mm in outer diameter and 15 mm in
thickness. Just above the bit, the compressive force in the pipe (due to the weight of the pipe) is
265 kN and the torque (due to drilling) is 19 kN m. Determine the maximum tensile,
compressive, and shear stresses in the drill pipe. (15)




DriLL pIPE STRESSES AT THE OUTER SURFACE
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oy=—7 0= ~265kN/6.362 X 107" m?
= —41.655 MPa
o, =0
T (19 kN-m X 75 mm)
Ty = — = Ty = 48.563 MPa
R 2934 X107 m* '

PRINCIPAL STRESSES

G (7Y
72=5 F\(5 ) T

P = compressive force T = Torque 41.65 [741.65\2 5
. ) . =——= /| —— | + (48.57)

d, = outer diameter d, = inner diameter 2 ! 2

P=265kN T=19kN-m d, = 150 mm = —20.83 MPa £ 52.85 MPa

dy=d,— 2t dy = 120 mm o, =32.0MPa. o, =73.7 MPa

A= E( 2 _ d%) A=6362 % 10°m2 MAXIMUM TENSILE STRESS o, = o
4\ o, = 32.0MPa «—

_ T a4 4 — 0 1 6 4
I, = kR dy — di I, =29.34 X 10" m MAXIMUM COMPRESSIVE STRESS O = 02

a. = —73.7 MPa —

MAXIMUM IN-PLANE SHEAR STRESS

f U_\‘ 2
Tmax = \ (7) + 1'_,_1.2_ Tmax = 2.8 MPa —

< Note: Since the principal stresses have opposite signs,
the maximum in-plane shear is larger than the maximum
out-of-plane shear stress.

9. A pressurized steel tank is constructed with a helical weld that makes an angle a = 55° with
the longitudinal axis (see figure). The tank has radius r = 0.5 m, wall thickness t = 10 mm, and
internal pressure p = 2.0 MPa. Also, the steel has modulus of elasticity E = 100 GPa and
Poisson’s ratio vV = 0.30. The equations for circumferential and longitudinal stresses are as
follows. (15)

Circumferential stress t

pr

Longitudinal stress o, = e

Determine the following quantities for the cylindrical part of the tank.
(a) The circumferential and longitudinal stresses.



(b) The maximum in-plane and out-of-plane shear stresses.

(c) The circumferential and longitudinal strains.
(d) The normal and shear stresses acting on planes parallel and perpendicular to the weld (show

these stresses on a properly oriented stress element).

avallar el

o P By S
{ (4 — -:L—-. =~ | :'| L\I J.__J]-'I/‘[
1 o 1/ f £ A :-'."." X .
{ ’
M | . -] — 3, A/ P
b MG il 1 n~plapeé l_.wmf‘: =" 0 e 26 Mg
1 KT [ " .', S T f r y — '
MRekamy /n oA o g MoK = 7 ¢ M5
i . J ) N . L i 4 ) ~
(C ) Grcynterential stran .y
\ . ) ]
( | "( [r o \ U i -y o A .
(L.I =% vy v - (771 =V 0> F=1) .000% -
: | |
. Q. Tr 4
s ” i \ .. / — J.000 \
— i vV L = { Y ,
N
| \ ) ~
k.'; / A - O FO A I .
55, St ¥ ——1095204 Gy N0
\ - -
=[x - _ Lbh dEMDg Y
o ?‘,F-"\-’"
\ 24517 AN = 2 =N I‘\:"\,
L/ 298
= 5 = a2 T .
2! “\A LX,D, = ff LA . 1 ‘A
<2” _,\\ — # — ;._f.- Wi £
-\ ¥ 1
P\
- : ey
bt AFHP . Ln—EN A2 &P
270 _"‘_‘_k_‘ A~ -1
W « Pia 18 7 1N =

Gy =4 LN T'.;: _23.6H g

10. Derive the equations of the deflection curve for a cantilever beam AB supporting a distributed

load of peak intensity g acting over one-half of the length (see figure). Also, obtain formulas for
the deflections g and d¢ at points B and C, respectively. (10)
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11. A fixed-end beam AB of length L supports a uniform load of intensity q (see figure).
Beginning with the second-order differential equation of the deflection curve (the bending-
moment equation), obtain the reactions, shear forces, bending moments, slopes, and deflections
of the beam. Construct the shear-force and bending-moment diagrams, labeling all critical values.

(10)
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q
L 2 | Y V¥V Y
X
~» A B <«
Mpy™ A AT M
X B
R L IR,
A B
Select M as the redundant reaction. B.C. 1 v =0 LG =
M4x2 q I_.XB X4
REACTIONS (FROM SYMMETRY AND EQUILIBRIUM) Ehv= — 5 + A6 1 + G (3)
gL _ . N
RA:RB:T MB:MA B.C.2v(0) =0 .‘CZZ
2 qu
B.C.3v(L) =0 SoMy = —
BENDING MOMENT (FROM EQUILIBRIUM) 12
_ @ _ q )
M—RAx—MA—T— —MA—E[Lx—x] (N REACTIONS
L 12
RA:RB:L MA:MB:L —
DIFFERENTIAL EQUATIONS 2 12
Eh" =M= —M, + %(u - SHEAR FORCE (FROM EQUILIBRIUM)
s V=R~ qr=hL -2
ElV' = —Mux + %(T - T) +q 2) AT =5k -2
A pa D

11



BENDING MOMENT (FROM EQ. 1) SHEAR-FORCE AND BENDING-MOMENT DIAGRAMS

M= —%(L2—6u+6x2) -

SLOPE (FROM EQ. 2)

Vo qx

= — (I — 3Lx + 2x%) —
12E1

DEFLECTION (FROM EQ. 3)

2
_qr )
v=upt Y -

3 L\  qL*
dmax = ~W 7 ) = 351

12. A simple beam ABCD has moment of inertia | near the supports and moment of inertia 21 in
the middle region, as shown in the figure. A uniform load of intensity ¢ acts over the entire
length of the beam. Determine the equations of the deflection curve for the left-hand half of the
beam. Also, find the angle of rotation 04 at the left-hand support and the deflection 6.« at the
midpoint. (10)

12



Use the bending-moment equation (Eq. 9-12a). L
B.C. | Symmetry: v’ 3 =
REACTIONS, BENDING MOMENT, AND DEFLECTION CURVE

F Eq. (4): C; = aL
rom Eq. (4): C; = 21
2 3 3
gLx* gx* gL (L o L)
L . S — = - — 5
2EIv 2 y Y 1= =3 (5)
SLOPE AT POINT B (FROM THE RIGHT)
. L .
Substitute x = 7 into Eq. (3):
Ehvg = gl 6)
B 768 ¢
B.C. 2 CONTINUITY OF SLOPES AT POINT B
(VB)Lert = (VB)Right
From Egs. (3) and (6):
2 3 3 3
BENDING-MOMENT EQUATIONS FOR THE LEFT-HAND HALF @(E) ,E(é) +C =— gL Oy =— TqL
OF THE BEAM 4 \4 6\ 4 768 o 256
B qlx qxz L
EN' =M= B 0=x=—- (1) SLOPE OF THE BEAM (FROM EQs. 3 AND 5)
Lxt g Igl? L
Lx g [L L T o L L
EQIn" =M= =9 (— =x= —) (2) Elv 4 6 256 O=x= 4 @
2 2 4 2
gLx* g  qL? (L _ L)
INTEGRATE EACH EQUATION Ep =%+t~ _* 1 (Z-,==C (8)
8 12 48 4 3
,_ gl g N
Eh' = -—— +C D=x=— 3)
6 4 ANGLE OF ROTATION 64 (FROM EQ. 7)
2
. gLx’ gx L L 0l
2EN = 1 5 +G (Z =x= E) ) 8y =—v'(0) = ZSijEI (positive clockwise) —

13



INTEGRATE EQS. (7) AND (8)

3 4 3
gLx gx* TgqL’x ( o
= - + =x=—
Elv 12 2 756 C3 0=x 1 (9)
L3 o glix L L
Elv = qu __(is —q48 c, (4 =x= ;) (10)

B.C. 3 Deflection at support A
v(0) = 0 From Eq. (9): G35 =0

DEFECTION AT POINT B (FROM THE LEFT)
. . L . )
Substitute x = I into Eq. (9) with C3 = 0

35qL*

Elve = =13

(11)

B.C. 4 Continuity of deflections at point B

(Ypright = (VB)Lert
From Egs. (10) and (11):

qL(L)3 q(L)4 qL3(L 35qL*
—\ =] - =) ——| =)+ C= -
24\ 4 48\ 4 48\ 4 6144
13gL*
LCG=— 3(.;
12,288
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DEFECTION OF THE BEAM (FROM EQs. 9 anD 10)

= —7;}1 (2117 — 6417 + 322%)
L
0=x=—
( * 4) -
= —ﬁmﬁ + 256L% — 512Lx° + 2562

MAXIMUM DEFLECTION (AT THE MIDPOINT E)
(From the preceding equation for v.)

5 L)_ 31gL*
mac = Y\ 57 ) T 4006E1

(positive downward)



