Estimation Theory Final Test_Solution

December 8, 2010

1. A simplified spacecraft tracking problem is formulated by

$$\begin{split} \dot{\mathbf{x}}_{c} &= \mathbf{w}_{c}, & \mathbf{w}_{c} \sim \mathbf{N}(0, q) \\ \mathbf{z}_{c} &= \mathbf{x}_{c} + \mathbf{v}_{c}, & \mathbf{v}_{c} \sim \mathbf{N}(0, r). \end{split} \tag{T10.2.1-1}$$

(a) Suppose that the measurements are taken every 0.5 second. Show that the discrete model for Eq. (T10.2.1-1) is given by

$$x(k+1) = x(k) + w(k)$$

$$z(k) = x(k) + v(k).$$
(T10.2.1-2)

Determine the mean and variance of w(k) and v(k).

(Solution) (10 points)

Given

$$\dot{x} = w \equiv A_c x + G_c w, \quad A_c = 0, G_c = 1, w \sim N(0, q)$$

 $z = x + v, \quad v \sim N(0, r)$

the discrete model is given by

$$x(k+1) = e^{A_c T} x(k) + w(k) = x(k) + w(k) \equiv Ax(k) + Gw(k)$$

$$z(k) = x(k) + v(k) \equiv Hx(k) + v(k)$$
(T2.1-1)
(T2.1-2)

where

$$w(k) \sim N\left(0, \int_0^T e^{A_c \tau} G_c Q G_c^T \left(e^{A_c \tau}\right)^T d\tau = Tq = 0.5q\right)$$
$$v(k) \sim N\left(0, \frac{r}{T} = 2r\right).$$

(b) Find the steady-state Kalman filter solution for this problem assuming that w(k) and v(k) are white Gaussian and uncorrelated each other.

(Solutiom) (20 points)

Find P_{∞} by solving the ARE

$$P_{\infty} = A \left[P_{\infty} - P_{\infty} H^{T} \left(H P_{\infty} H^{T} + R \right)^{-1} H P_{\infty} \right] A^{T} + G Q G^{T}$$

$$= \left[P_{\infty} - P_{\infty} \left(P_{\infty} + 2r \right)^{-1} P_{\infty} \right] + \frac{q}{2}$$

$$= P_{\infty} - \frac{P_{\infty}^{2}}{P_{\infty} + 2r} + \frac{q}{2}$$

$$\frac{P_{\infty}^{2}}{P_{\infty} + 2r} = \frac{q}{2}$$

$$P_{\infty}^{2} - \frac{q}{2} P_{\infty} - rq = 0$$

$$P_{\infty} = \frac{q}{4} \pm \sqrt{\left(\frac{q}{4}\right)^{2} + rq}.$$

Since $P_{\infty} > 0$

$$P_{\infty} = \frac{q}{4} + \sqrt{\left(\frac{q}{4}\right)^2 + rq} = \frac{1}{4} \left(q + \sqrt{q^2 + 16rq}\right).$$
 (T2.1-3)

And

$$K_{\infty} = P_{\infty} H \left(H P_{\infty} H^{T} + R \right)^{-1}$$

$$= P_{\infty} \left(P_{\infty} + 2r \right)^{-1}$$

$$= \frac{P_{\infty}}{P_{\infty} + 2r}$$

$$= \frac{\frac{1}{4} \left(q + \sqrt{q^{2} + 16rq} \right)}{\frac{1}{4} \left(q + \sqrt{q^{2} + 16rq} \right) + 2r}.$$
(T2.1-4)

The transfer function for the steady-state Kalman filter, $\,H_{\it SSKF}(z)\,,$ is

$$H_{SSKF}(z) = H(zI - A[I - K_{\infty}H])^{-1}AK_{\infty} = \frac{K_{\infty}}{z - 1 + K_{\infty}}$$
 (T2.1-5)

Let q = r = 1 for comparison,

$$H_{SSKF}(z) \approx \frac{0.39}{z - 0.61}$$
 (T2.1-6)

(c) Find the causal Wiener filter solution for this problem and compare it with the result of (b).

(Solution) (20 points)

Suppose w(k) and v(k) are white, then

$$S_w(z) = 0.5q$$

From x(k+1) = x(k) + w(k),

$$H_{wtox}(z) = \frac{S_X(z)}{S_w(z)} = \frac{1}{Z^{-1} - 1}$$
 (T2.1-7)

And

$$S_X(z) = S_W(z)H_{wtox}(z)H_{wtox}(z^{-1})$$

$$= 0.5q \cdot \frac{1}{z^{-1} - 1} \cdot \frac{1}{z - 1}$$

$$= \frac{0.5q}{(1 - z^{-1})(1 - z)}$$
(T2.1-8)

Let,

$$s(k) = x(k)$$
$$z(k) = s(k) + v(k)$$

Then,

$$S_{S}(z) = S_{X}(z)$$

$$S_{Z}(z) = S_{S}(z) + S_{V}(z)$$

$$= \frac{0.5q}{(1-z)(1-z^{-1})} + 2r$$

$$S_{SZ}(z) = S_{S}(z) = \frac{0.5q}{(1-z)(1-z^{-1})}$$

$$T_{SZ}(z) = \frac{1}{2} \left[S_{SZ}(z) \right]$$

$$T_{Z} = 1.10$$

$$H_{Wiener}(z^{-1}) = \frac{1}{S_z^+(z)} \left[\frac{S_{SZ}(z)}{S_z^{-1}(z)} \right]_+$$
 (T2.1-10)

(Note: Refer to Eq.(T2.1-7))

To compare with (b), let q=r=1, then

$$\begin{split} S_z(z) &= \frac{0.5}{(1-z)(1-z^{-1})} + 2 \\ &= \frac{0.5 + 2(1-z)(1-z^{-1})}{(1-z)(1-z^{-1})} \\ &= \frac{4.5 - 2z - 2z^{-1}}{(1-z)(1-z^{-1})} \\ &= \frac{1.22(1.64-z)(1.64-z^{-1})}{(1-z)(1-z^{-1})} \\ &= \frac{1.10(1.64-z^{-1})}{(1-z^{-1})} \cdot \frac{1.10(1.64-z)}{(1-z)} \\ &= S_z^+(z)S_z^-(z) \end{split}$$

$$\begin{split} \frac{S_{SZ}(z)}{S_Z^{-1}(z)} &= \frac{0.5}{(1-z)(1-z^{-1})} \cdot \frac{(1-z)}{1.10(1.64-z)} \\ &= \frac{0.45}{(1-z^{-1})(1.64-z)} \\ &= \frac{0.70}{(1-z^{-1})} - \frac{0.70}{(1-1.64Z^{-1})} \\ \left[\frac{S_{SZ}(z)}{S_Z^{-1}(z)} \right]_+ &= \frac{0.70}{1-z^{-1}} \\ H_{Wiener}(z^{-1}) &= \frac{(1-z^{-1})}{1.10(1.64-z^{-1})} \cdot \frac{0.70}{(1-z^{-1})} \\ &= \frac{0.39}{1-0.61z^{-1}} \end{split}$$

Comparing Eqs. (T2.1-6) and (T2.1-11), we see that $H_{SSKF}(z) = H_{Wiener}(z)$.

(d) Find the steady-state optimal smooth solution for this problem and compare it with the result of (b).

(For (b), (c), and (d), let
$$q = r = 1$$
.)

(Solution)

The forward filter is the same as (b), viz,

$$P_{\infty} = \frac{1}{4}(q + \sqrt{q^2 + 16rq})$$

$$K_{\infty} = \frac{P_{\infty}}{P + 2r}$$
(T2.1-12)

The backward filter is given by

$$S_{\infty} = A^{T} \left[I - S_{\infty} G \left[G^{T} S_{\infty} G + Q^{-1} \right]^{-1} G^{T} \right] S_{\infty} A + H^{T} R^{-1} H$$

$$= \left[1 - S_{\infty} \left(S_{\infty} + \frac{1}{0.5q} \right)^{-1} \right] S_{\infty} + \frac{1}{2r}$$

$$(T2.1-13)$$

Solve Eq.(T2.1-13) for S_{∞} to obtain

$$S_{\infty} = \frac{1}{4r} \left[1 + \sqrt{1 + \frac{16}{q}} \right] \qquad (S_{\infty} > 0)$$

The steady-state optimal smoother is obtained by

$$K_{S} = P_{\infty} S_{\infty} \left[I + P_{\infty} S_{\infty} \right]^{-1}$$
$$P_{S} = \left[I - K_{S} \right] P_{\infty}$$

For a simple comparison, let q=r=1. Then,

$$P_{\infty} = \frac{1}{4} (1 + \sqrt{17}) = 1.28$$

$$S_{\infty} = \frac{1}{4} (1 + \sqrt{17}) = 1.28$$

$$K_{S} = 1.28 \times 1.28 \times [1 + 1.28 \times 1.28]^{-1}$$

$$= 0.62$$

$$P_{S} = (1 - 0.62) \times 1.28 = 0.49$$

We can see that the steady-state error variance is reduced to 0.49 from 1.28.

2. Consider the following state and measurement equations

$$x_{k+1} = \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix} x_k + w_k, \quad w_k \sim \left(0, \begin{bmatrix} 0 & 0 \\ 0 & 0.5 \end{bmatrix} \right), \quad x_0 \sim \left(0, P_0 \right)$$

$$z_k = Hx_k + v_k, \quad v_k \sim \left(0, 1 \right).$$

(a) Determine if the steady-state Kalman gain K is asymptotically stable when $H = \begin{bmatrix} 0 & 3 \end{bmatrix}$.

(Solution) (10 points)

$$A = \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix}, \quad G = I, \quad Q = \begin{bmatrix} 0 & 0 \\ 0 & 0.5 \end{bmatrix} = \sqrt{Q}\sqrt{Q}^T$$

$$\sqrt{Q} = \begin{bmatrix} 0 & 0 \\ 0 & \sqrt{0.5} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0.707 \end{bmatrix}$$

Reachability test for $(A, G\sqrt{Q})$.

$$\rho \begin{bmatrix} 0 & 0 & 0 & 0 & \cdots \\ 0 & 0.707 & 0 & 0.707 & \cdots \end{bmatrix} = 1.$$

Therefore, $\left(A, G\sqrt{Q}\right)$ is non-reachable.

Now, test detectability for (A, H). When $H = \begin{bmatrix} 0 & 3 \end{bmatrix}$,

$$A - LH = \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} l_1 \\ l_2 \end{bmatrix} \begin{bmatrix} 0 & 3 \end{bmatrix} = \begin{bmatrix} 4 & -3l_1 \\ 0 & 1 - 3l_2 \end{bmatrix}.$$

(A, H) is non-detectable since we can not move the eigenvalue 4.

According to Theorem 5-1 and 5-2 in the note, the steady-state error with the Kalman gain K is asymptotically unstable. In addition, it is not guaranteed that for every choice of P_0 there is a bounded limiting solution P.

(b) What if $H = [3 \ 3]$?

(Solution) (10 points)

When $H = [3 \ 3]$,

$$A-LH=\begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix}-\begin{bmatrix} l_1 \\ l_2 \end{bmatrix}\begin{bmatrix} 3 & 3 \end{bmatrix}=\begin{bmatrix} 4-3l_1 & -3l_1 \\ -3l_2 & 1-3l_2 \end{bmatrix}.$$

Two eigenvalues of A may be arbitrarily located by properly choosing l_1 and l_2 . Therefore, (A, H) is detectable. The steady-state error with the Kalman gain K is asymptotically unstable. However, for every choice of P_0 there is a bounded limiting solution P.

3. The equation of motion of a pendulum hanging from a ceiling is given by the differential equation

$$\frac{d^2\theta(t)}{dt^2} + \sin\theta(t) = w(t),$$

where $\theta(t)$ is the angular position of the pendulum at time t. Discrete measurements of $\theta(t)$ are given by $z(n)=\theta(n)+v(n)$, where the sampling interval T=0.5. Suppose that $w(t)\sim N(0,0.02)$, $v(n)\sim N(0,1)$, and $\theta(0)\sim N(0,0.02)$. Give the equations for the EKF that provides an estimate of $\theta(i)$, $i=1,2,\cdots$, based on the measurements z(i) for $i=1,2,\cdots,n$.

(Solution) (Kamen's Problem 8.8)

- 4. Suppose that RV x is uniformly distributed on [-1, 1], and $y = e^{2x}$.
 - (a) What is the mean of y, \overline{y} ?

(Solution) (5 points)

$$\overline{y} = E\{y\} = E\{e^x\} = \int_{-1}^{1} \frac{1}{2} e^{2x} dx = \frac{1}{4} (e^2 - e^{-2}) = 1.813$$

- (b) What is the first-order approximation to \overline{y} ? (Solution) (5 points)
 - 1st order approximation

$$\overline{y} \simeq h(\overline{x}) + \frac{\partial h}{\partial x}\Big|_{x=\overline{x}} E\{\overline{x}\} = 1.$$

(c) What is the second-order approximation to \overline{y} ?

(Solution) (5 points)

2nd order approximation

$$\overline{y} = E\{h(x)\} \simeq h(\overline{x}) + E\left\{D_{\tilde{x}}h + \frac{1}{2!}D_{\tilde{x}}^{2}h\right\}$$

$$= 1 + \frac{1}{2}\frac{\partial^{2}h}{\partial x^{2}}\Big|_{x=\overline{x}} E\{\tilde{x}^{2}\} = 1 + \frac{1}{2} \cdot 4P_{x} = \frac{5}{3} \approx 1.666.$$

(d) What is the unscented approximation to \overline{y} ? (Solution) (5 points)

Since

$$\overline{x}=0$$
, $\sigma_x^2=\frac{1}{3}$

and

$$\tilde{x}^{(1)} = \frac{1}{\sqrt{3}}, \quad \tilde{x}^{(2)} = -\frac{1}{\sqrt{3}},$$

we obtain

$$\overline{y}_u = \frac{1}{2} \left(e^{\frac{2}{\sqrt{3}}} + e^{-\frac{2}{\sqrt{3}}} \right) = 1.744.$$

(e) What is the variance of y? What is the unscented approximation to the variance of y?

(Solution) (10 points)

$$\operatorname{var}(y) = E\{y^2\} - \overline{y}^2 = E\{e^{4x}\} - (1.813)^2 = 6.8225 - 3.2885 = 3.534...$$

$$\operatorname{var}(y_u) = \frac{1}{2} \sum_{i=1}^{2} \left[h\left(\tilde{x}^{(i)}\right) - \overline{y}_u \right]^2 = \frac{1}{2} \left[\left(e^{\frac{2}{\sqrt{3}}} - 1.744 \right)^2 + \left(e^{-\frac{2}{\sqrt{3}}} - 1.744 \right)^2 \right] \approx 2.042.$$