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December 8, 2010

. Asimplified spacecraft tracking problem is formulated by

Xc = Wc’ WC~N(O7Q)
(T10.2.1-1)
Zc - Xc + Vc? VC~N(O7T)'

(a) Suppose that the measurements are taken every 0.5 second. Show that the
discrete model for Eq. (T10.2.1-1) is given by

k+1) = x(k k
x(k +1) = x(k) +w(k) (T10.2.1-2)
z(k) = x(k) + v(Kk).
Determine the mean and variance of w(k) and v(k).

(Solution) (10 points)
Given
X=w=Ax+Gw, A =0G =Lw~N(0,q)
z=Xx+Vv, v~N(O,r)
the discrete model is given by
x(k +1) = e™ x(k) + w(k) = x(k) + w(k) = Ax(k) + Gw(k) (T2.1-1)
z(k) = x(k) +v(k) = Hx(k) +v(k) (T2.1-2)
where

w(k) ~ N (o, [ e+6,QG] (ev) dr=Tq= 0.5q)

ZZrJ_

(b) Find the steady-state Kalman filter solution for this problem assuming that
w(k) and v(k) are white Gaussian and uncorrelated each other.
(Solutiom) (20 points)

Find P, by solving the ARE

—| =

v(k) ~ N (0,



P - A[Pw —P.H"(HP,H" +R)" HPOO}AT +GQGT
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=[P, —P.(P.+2r)"P }+%
P2 q

oo_ = +_
P+2r 2

2
P :%+ [%} +rq zi(qh/qz +16FQ)- (T2.1-3)

o (T2.1-)
i(q+\/q2+16rq)
i(q +4/0° +16rq )+ 2r |

The transfer function for the steady-state Kalman filter, Hg,.(z), is

L (T2.1-5)
z-1+K

Hee (2) =H (Zl —A[l — KOOH])_l AK, =

Let q=r=1 for comparison,
0.39
7-0.61
(c) Find the causal Wiener filter solution for this problem and compare it with
the result of (b).
(Solution) (20 points)
Suppose w(k)and v(k) are white, then

Hgr (2) = (T2.1-6)



Sy (2) =0.5q
From x(k +1) = x(k) + w(k) ,

S S() 1 i
Hwtox(z) - SW (Z) - 271 _1 (T2.1 7)
And

Sy (2) = Sy (2)H oy (D H 0 (27
1 1
B 0.5q
S (1-z11-2)
Let,
s(k) = x(k)
z(k) = s(k) +v(k)
Then,

Ss(2)=S,(2)
S; (2)= Ss (2)+ Sy (2)
__ 05
1-2)(1-z1

_ _ 0.5q
52 (8=, ) =7

or (T2.1-9)

W 1 84 ]
HWiener (Z ) - SZ+(Z) |:Szl(Z) :|+ (T21 10)

(Note: Refer to Eq.(T2.1-7))
To compare with (b), let g=r=1, then

S,(z) = L_1+2
@1-2)a-z7)
_05+2(1-z)(1-z7)
1-21-z1
45-27-27"
@-n-zY)
_1.22(1.64—27)(1.64-77")
1-20-z"Y
_110(1.64-2") 1.10(1.64-2)
-z 1-2)
=S5,"(9)S; ()




S (2) 0.5 (1-2)
S,M(z) (-z)A-z7) 1.10(1.64-17)
~ 0.45
C(1-zY(1.64-2)
070 0.70
T (@-zY) (@-1.64z71)

{ S, (2) } 070

S, M2)| 1-z7
-1

Ho (pho_ @-7%) 070
werr (2°) 1.10(1.64-z") (1-z7")

039

S 1-061z7"

0.39

HWiensr (Z) - 2—0.61 (T21 11)

Comparing Eqgs. (T2.1-6) and (T2.1-11), we see that H,, (z) = Hyene (2) -
(d) Find the steady-state optimal smooth solution for this problem and compare
it with the result of (b).
(For (b), (c),and (d), let g=r=1.)
(Solution)
The forward filter is the same as (b), viz,

P, :%(q+\/q2+16rq)

P

0

* TP tor

(T2.1-12)

The backward filter is given by

Y [| -5,6[6's,6+Q7]" GT}SwA+ HTRH

L . (T2.1-13)
= {1— S, (Sw +—j ]Sw +—
0.5q

Solve Eq.(T2.1-13) for s, to obtain

S, =i{l+ [1+E} (S, >0)
4r q

The steady-state optimal smoother is obtained by
Ke=PS,[I+PS,]"
P, =[I-K]P

©

For a simple comparison, let g=r=1. Then,



P, = %(1+ V17)=1.28

S, =%(1+\/ﬁ):1.28

K, =1.28x1.28x[1+1.28x1.28] "
=0.62
P, = (1-0.62)x1.28 = 0.49
We can see that the steady-state error variance is reduced to 0.49 from 1.28.

2. Consider the following state and measurement equations

4 0 00
Xq = 01 X + W, W, ~|0, 0 05!/ X0~(0,P0)

z, =Hx +v,, v, ~(01).

(a) Determine if the steady-state Kalman gain K is asymptotically stable when

H=[0 3].
(Solution) (10 points)
40 0 0 .
A=lg | @=L @=|; o5=veve
0 0 0 0
JQ = 0 05| |0 0.707

Reachability test for (A, G\JQ ) .

0 0 O 0

0 0707 0 0707 |7V

p

Therefore, (A, G\@) is non-reachable.

Now, test detectability for (A, H).When H=I[0 3],

4 0

A—LH:O ]




(A, H ) is non-detectable since we can not move the eigenvalue 4.

According to Theorem 5-1 and 5-2 in the note, the steady-state error with
the Kalman gain K is asymptotically unstable. In addition, it is not
guaranteed that for every choice of P, there is a bounded limiting solution

P.

(b) Whatif H=[3 3]?
(Solution) (10 points)
When H =[3 3],

4 0
0 1

ll
L

4-31 -3

A—LH =
—3, 1-3

- 13 3=

Two eigenvalues of A may be arbitrarily located by properly choosing [
and [,. Therefore, (A, H) is detectable. The steady-state error with the

Kalman gain K is asymptotically unstable. However, for every choice of P,
there is a bounded limiting solution P.

3. The equation of motion of a pendulum hanging from a ceiling is given by the

differential equation
2
%gt) +sin6(t) = w(t),

where 6(¢) is the angular position of the pendulum at time t. Discrete
measurements of 6(¢) are given by z(n) = 6(n)+ v(n), where the sampling
interval T = 0.5 . Suppose that w(t)~ N(0,0.02) , wv(n)~ N(0,1), and
6(0) ~ N(0,0.02) . Give the equations for the EKF that provides an estimate of
0(i), i =1,2,---, based on the measurements z(:) for i =12 n.

(Solution) (Kamen’s Problem 8.8)

4. Suppose that RV x is uniformly distributed on [-1, 1], and y =e**.
(a) What is the mean ofy, y?
(Solution) (5 points)

7:E{yyzE{@}:jiée“dx=%(&-e2):1813



(b) What is the first-order approximation to y?
(Solution) (5 points)
1% order approximation

oh

FEh@) o F{Th=1

T=T

(c) What is the second-order approximationto y?
(Solution) (5 points)
2nd order approximation

y=E{h@}~h(z)+ E{Dih +%D§h}

1

1 0%h U BT
E{x}_1+24g_

—14+=
2 0z s
(d) What is the unscented approximationto y

(Solution) (5 points)

~ 1.666.

3
3
2

Since
X =0, GXZ = 1
3
and
-1 w1
J3 N
we obtain

(2 -2
V., =§(e¢é +e ﬁJ=1.744..

(e) What is the variance of y? What is the unscented approximation to the

variance of y?
(Solution) (10 points)

var(y)=E{y’}-y* =E{e"|-(1.813)" = 6.8225-3.2885=3.534..

2

2 2 2 2
var(y,) =%Z[h(>~<‘”)—7u]2 —%l[eﬁ —1.744} +[eﬁ -1.744} } ~2.042.

i=1



