Computer Aided Ship Design

- 2nd Exam -

Saturday, December 3rd, 2011

Time: 10:00-13:00 (3 hours)

Name	
SNU ID #	

<u>Note</u>: Budget your time wisely. Some parts of this exam could take you much longer time than others. Move on if you are stuck and return to the problem later.

Curve & Surface

Problem Number		1		2			3			Total
		1.1	1.2	2.1	2.2	2.3	3.1	3.2	3.3	
Grader	Max	10	10	10	20	20	10	10	10	100
	Score									

1. (De Casteljau algorithm) Let a 2D curve Bezier curve be given by the control points \mathbf{b}_0 , \mathbf{b}_1 , \mathbf{b}_2 , \mathbf{b}_3 and \mathbf{b}_4 . By using repeated linear interpolation at any given parameter \hat{u} , you can construct a Bezier curve of degree 4.

1.1 Sketch how to construct (e.g., using the de Casteljau algorithm) the point on the curve corresponding to $u = \hat{u}$. Show that this point is on the Bezier curve of degree 4, which is given by the control points $\mathbf{b_0}$, $\mathbf{b_1}$, $\mathbf{b_2}$, $\mathbf{b_3}$, $\mathbf{b_4}$.

1.2 Referring to the problem 1.1, we can define two segments of the curve corresponding to $[0, \hat{u}]$ and $[\hat{u}, 1]$. Find and sketch the control points for these two curves, and explain that these two curves are connected and satisfying the continuity conditions C⁰, C¹ and C².

2. (Cubic B-Spline Curve Interpolation) Following figure shows a section line of a ship. Suppose you are given a set of data points P_0 , P_1 , P_2 , P_3 . Determine the curve passing through them.

2.1 Sketch the control points of a cubic B-spline curve. By using the knot spacing Δ_i ($\Delta_i = u_{i+1} - u_i$), explain that the curve is satisfying the continuity conditions C¹ and C².

2.2 Find the control points of a cubic B-spline curve, which is passing through the points P_0 , P_1 , P_2 , P_3 with the two end conditions t_0 , t_1 .

- Points of the curve: $P_0 = (0,0)$, $P_1 = (3,4)$, $P_2 = (8,4)$, $P_3 = (12,7)$
- Tangent vector: $t_0 = (0, 3), t_1 = (3, 3)$

Г

$$\begin{aligned} \alpha_{i} &= \frac{(\Delta_{i+2})^{2}}{(\Delta_{i}+\Delta_{i+1}+\Delta_{i+2})(\Delta_{i+1}+\Delta_{i+2})} \\ \beta_{i} &= \left\{ \frac{\Delta_{i+2}(\Delta_{i}+\Delta_{i+1})}{\Delta_{i}+\Delta_{i+1}+\Delta_{i+2}} + \frac{\Delta_{i+1}(\Delta_{i+2}+\Delta_{i+3})}{\Delta_{i+1}+\Delta_{i+2}+\Delta_{i+3}} \right\} / (\Delta_{i+1} + \Delta_{i+2}) \\ \gamma_{i} &= \frac{(\Delta_{i+1})^{2}}{(\Delta_{i+1}+\Delta_{i+2}+\Delta_{i+3})(\Delta_{i+1}+\Delta_{i+2})} \end{aligned}$$

2.3 Using the control points from the problem 2.2, find a point on this curve at u = 1.5.

$$\frac{B\text{-spline curve}}{\mathbf{r}(u) = \begin{bmatrix} x(u) \\ y(u) \end{bmatrix} = \sum_{i=0}^{D-1} \mathbf{d}_i N_i^n(u) \quad (D: \text{ the number of control points})$$

$$\frac{Cox-de \text{ Boor recurrence formula}}{N_i^n(u) = \frac{u - u_{i-1}}{u_{i+n} - u_{i-1}} N_i^{n-1}(u) + \frac{u_{i+n} - u}{u_{i+n} - u_i} N_{i+1}^{n-1}(u), \quad N_i^0(u) = \begin{cases} 1 & \text{if } u_{i-1} \le u < u_i \\ 0 & \text{else} \end{cases}$$

3. (Cubic B-Spline Surface Interpolation) A set of data points P_{00} , P_{01} , ..., P_{22} is given as in the following figure. Find a set of cubic B-Spline surface control points, such that the data points are on the resulting surface.

3.1 Determine the knot values in u-direction.

3.2 Derive the cubic B-Spline curve in u-direction.

3.3 Determine the knot values in v-direction, and find the control points of the cubic B-Spline surface.

3.4 Using the control points from the problem 3.3, find a point on this surface at $(u, v) = (\hat{u}, \hat{v})$.