Computer Aided Ship Design

- $2^{\text {nd }}$ Exam -

Saturday, December 3 ${ }^{\text {rd }}$, 2011

Time: 10:00-13:00 (3 hours)

Name	
SNU ID \#	

Note: Budget your time wisely. Some parts of this exam could take you much longer time than others. Move on if you are stuck and return to the problem later.

Curve \& Surface

Problem Number		1		2			3			Total
		1.1	1.2	2.1	2.2	2.3	3.1	3.2	3.3	
Grader	Max	10	10	10	20	20	10	10	10	100
	Score									

1. (De Casteljau algorithm) Let a 2D curve Bezier curve be given by the control points $\mathbf{b}_{\mathbf{0}}, \mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}}$, \mathbf{b}_{3} and \mathbf{b}_{4}. By using repeated linear interpolation at any given parameter \hat{u}, you can construct a Bezier curve of degree 4.

1.1 Sketch how to construct (e.g., using the de Casteljau algorithm) the point on the curve corresponding to $u=\hat{u}$. Show that this point is on the Bezier curve of degree 4 , which is given by the control points $\mathbf{b}_{\mathbf{0}}, \mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}}, \mathbf{b}_{\mathbf{3}}, \mathbf{b}_{4}$.
1.2 Referring to the problem 1.1, we can define two segments of the curve corresponding to $[0, \hat{u}]$ and $[\hat{u}, 1]$. Find and sketch the control points for these two curves, and explain that these two curves are connected and satisfying the continuity conditions C^{0}, C^{1} and C^{2}.
2. (Cubic B-Spline Curve Interpolation) Following figure shows a section line of a ship. Suppose you are given a set of data points $\mathbf{P}_{\mathbf{0}}, \mathbf{P}_{\mathbf{1}}, \mathbf{P}_{\mathbf{2}}, \mathbf{P}_{\mathbf{3}}$. Determine the curve passing through them.

2.1 Sketch the control points of a cubic B-spline curve. By using the knot spacing $\Delta_{i}\left(\Delta_{i}=u_{i+1}-\right.$ u_{i}), explain that the curve is satisfying the continuity conditions C^{1} and C^{2}.
2.2 Find the control points of a cubic B-spline curve, which is passing through the points $\mathbf{P}_{\mathbf{0}}, \mathbf{P}_{\mathbf{1}}$, $\mathbf{P}_{2}, \mathbf{P}_{3}$ with the two end conditions $\mathbf{t}_{0}, \mathbf{t}_{\mathbf{1}}$.

- Points of the curve: $\mathbf{P}_{\mathbf{0}}=(0,0), \mathbf{P}_{\mathbf{1}}=(3,4), \mathbf{P}_{\mathbf{2}}=(8,4), \mathbf{P}_{\mathbf{3}}=(12,7)$
- Tangent vector: $\mathrm{t}_{0}=(0,3), t_{1}=(3,3)$

$$
\begin{aligned}
& \alpha_{i}=\frac{\left(\Delta_{i+2}\right)^{2}}{\left(\Delta_{i}+\Delta_{i+1}+\Delta_{i+2}\right)\left(\Delta_{i+1}+\Delta_{i+2}\right)} \\
& \beta_{i}=\left\{\frac{\Delta_{i+2}\left(\Delta_{i}+\Delta_{i+1}\right)}{\Delta_{i}+\Delta_{i+1}+\Delta_{i+2}}+\frac{\Delta_{i+1}\left(\Delta_{i+2}+\Delta_{i+3}\right)}{\Delta_{i+1}+\Delta_{i+2}+\Delta_{i+3}}\right\} /\left(\Delta_{i+1}+\Delta_{i+2}\right) \\
& \gamma_{i}=\frac{\left(\Delta_{i+1}\right)^{2}}{\left(\Delta_{i+1}+\Delta_{i+2}+\Delta_{i+3}\right)\left(\Delta_{i+1}+\Delta_{i+2}\right)}
\end{aligned}
$$

2.3 Using the control points from the problem 2.2, find a point on this curve at $u=1.5$.

B-spline curve

$$
\mathbf{r}(u)=\left[\begin{array}{l}
x(u) \\
y(u)
\end{array}\right]=\sum_{i=0}^{D-1} \mathbf{d}_{i} N_{i}^{n}(u) \text { (D: the number of control points) }
$$

Cox-de Boor recurrence formula

$$
N_{i}^{n}(u)=\frac{u-u_{i-1}}{u_{i+n-1}-u_{i-1}} N_{i}^{n-1}(u)+\frac{u_{i+n}-u}{u_{i+n}-u_{i}} N_{i+1}^{n-1}(u), \quad N_{i}^{0}(u)=\left\{\begin{array}{cc}
1 & \text { if } u_{i-1} \leq u<u_{i} \\
0 & \text { else }
\end{array}\right.
$$

3. (Cubic B-Spline Surface Interpolation) A set of data points $\mathbf{P}_{\mathbf{0 0}}, \mathbf{P}_{\mathbf{0 1}}, \ldots, \mathbf{P}_{\mathbf{2 2}}$ is given as in the following figure. Find a set of cubic B-Spline surface control points, such that the data points are on the resulting surface.

3.1 Determine the knot values in u-direction.
3.2 Derive the cubic B-Spline curve in \boldsymbol{u}-direction.
3.3 Determine the knot values in \boldsymbol{v}-direction, and find the control points of the cubic B-Spline surface.
3.4 Using the control points from the problem 3.3 , find a point on this surface at $(u, v)=(\hat{u}, \hat{v})$.
