459.666A: The first midterm exam

Answer either in English or in Korean.

Each sub-problem (5pt, unless indicated otherwise) is relatively independent.

Don't panic and give up too soon. Good luck!

1. Boltzmann Response (30pts total)

Statistical mechanics states that the probability distribution function of electrons f(E) in a thermal equilibrium is given as a function of particle's energy "E" and proportional to

$$\exp\left(-\frac{E}{T_e}\right)$$

where $T_{\rm e}$ is the electron temperature.

Consider an electrostatic fluctuation " ϕ " in a plasma with a uniform magnetic field in z direction, and $n_0 = n_0(x)$. In the presence of this fluctuation, with the wave complex amplitude proportional to $e^{i(\vec{k}\cdot\vec{x}-\omega t)}$,

- a. what condition in terms of the phase velocity of this fluctuation (wave) should be satisfied for the electrons to be considered in a thermal equilibrium? State the condition mathematically, and discuss its physical meaning.
- b. From this, derive the Boltzmann response of electron density, n_e is proportional to $exp(|e|\phi/T_e)$.

c. Derive the same electron density expression from the following electron momentum equation along the magnetic field.

- d. State the reason why this response is also called "adiabatic response".
- e. Obtain the associated electron temperature fluctuation. STe/Te,c.
- f. Show that with this adiabatic response, there's no fluctuation-driven electron particle flux in the direction of density gradient up to the second order in fluctuation amplitude, perpendicular to the equilibrium magnetic field, regardless of ion dynamics.

2. Electron Drift Instability for bi-Maxwellian electron distribution (40pts total)

Consider a drift wave type electrostatic fluctuation " ϕ " in a collisionless plasma with a uniform magnetic field in z direction, B₀, and n₀ = n₀(x). The wave complex amplitude is proportional to $e^{i(\vec{k}\cdot\vec{x}-\omega t)}$. The electron distribution function is given by a bi-Maxwellian characterized by T₁ for motions along z and T_L for motions in (x,y) plane. Both temperatures vary in x direction, and

 $F_{o} = \left(\frac{m_{e}}{2\pi}\right)^{3/2} \frac{n_{o}}{T_{L}T_{L}^{3/2}} \exp\left(-m_{e}U_{L}^{2}/_{2}T_{L} - m_{e}U_{L}^{2}/_{2}T_{L}\right)$ In this geometry, the electron drift-kinetic equation is given by

a. State the reason why a term looking like let by a let by Be a fe is absent in Eq. (1).

b. In deriving the linearized electron drift-kinetic equation for $Sf_e = f_e - F_o$, $\frac{\partial}{\partial t} Sf_e + c \frac{S\vec{E} \times \vec{B}}{B^2} \cdot \vec{\nabla}_L F_c + U_Z \frac{\partial}{\partial z} Sf_e - \frac{|e|}{m} SE_Z \frac{\partial}{\partial U_Z} F_e = 0$, (2)

some terms have been ignored. Under what conditions they can be ignored? What are their physical meanings?

- c. Identify two terms from Eq. (2) which yield the adiabatic electron response in an appropriate limit.
- d. **(10pts)** Calculate the dominant imaginary part of perturbed density response from the resonant electron-wave interaction as a correction for the adiabatic electron response. Use an appropriate frequency ordering, and the following mathematical identity.

For
$$G_{10}(v) = \frac{n_0 \left(\frac{m}{2\pi T_0}\right)^{1/2} \exp\left(-\frac{v^2}{2v_{re}^2}\right)}{2\pi T_0}$$
, $exp\left(-\frac{v^2}{2v_{re}^2}\right)$

e. From the following ion continuity equation, obtain the ion density response $\frac{\partial}{\partial t} S n_i + \frac{c}{B^2} \frac{S \vec{E} \cdot \vec{R}}{B^2} \cdot \vec{\nabla}_L n_O + n_O \vec{\nabla}_L \cdot \vec{u}_{per} = 0$, here \vec{u}_{per} is

the polarization drift.

- f. From the results in "d" and "e", and the quasi-neutrality condition, derive a dispersion relation for an electron drift instability for this system.
- g. Discuss the different roles played by $T_{\dot{l}\dot{l}}$ and by $T_{\dot{\perp}}$,

3. Ion Temperature Gradient Instability (30pts total)

- a. State the reasons why ITG in stabilities are of primary research interests in magnetic fusion energy research?
- b. Why can ITG instability occur (unstable) even with a Boltzmann electron response?

Consider the following linearized fluid equations for ions. Sue is the perturbed \mathcal{L} $Sn: + Sue \cdot \nabla n_c + n_c \nabla n_s u_n = 0$, (1) Exported \mathcal{L} $Su_n = -\text{let} \nabla n_s \nabla n_s u_n = 0$, (2) \mathcal{L} $SP: + Sue \cdot \mathcal{L}$ $SP: + Sue \cdot \mathcal{L}$ SP:

- c. If ion temperature gradient is very steep (strong), and density profile is flat, what terms in the above equations can be ignored for a derivation of strong ITG instability? Identify as many non-essential terms as you can.
- d. (10pts) Find a dispersion relation for ITG from a simplified equation in "c".
- e. Compare the relative amplitude of fluctuations, $\delta T_i / T_i$ and $\delta n / n$. Do density fluctuations exist for a flat mean density profile? State the reason for your answer.