The $2^{\text {nd }}$ Midterm Exam for (2012-Fall) 459.666 A. Special Topics in Fusion Plasmas (Plasma Turbulence and Turbulent Transport)
(1). Write the current affiliation and the most significant scientific contribution of people listed below.

10 pts.
a. Lin chen
b. Paul H. Rutherford
c. Katsumi Ida
d. William M, Tang
e. Mitsuru Kikuchi
(2.) Name the institution and the country in which the copts following experiment is located.
(eq, Q: TFTR, A: Princeton Plasma Physics Lab, U.S.A.)
a) VEST
b) ITER
c) KSTAR
d) ASDEX-U
e) $H L-2 A$
f) Alcator C-Mod
g) Joint European Torus
h) Large Helical Device
i) D II I-D
j) NSTX
(3. What conditions (ordering assumptions) should be 20pts. Satisfied for the following quantities for the validity of the linear electrostatic ion gyrokinetic equation?
Answer either by " \sim " or by " $>$ ".

$$
\text { (eg. } \quad A \sim B, \quad C \gg D, \cdots) \text {. }
$$

a) $\Omega_{c i}=\frac{|e| B}{M_{i} c}, \omega, \omega * e, \frac{v_{T_{i}}}{q R_{0}}, 1 / T_{E}$

Lets
(T_{E} : energy confinement time).
$\begin{aligned} & \text { b) } \\ & \text { pts }\end{aligned} R_{0}, L_{n}, p_{i}, 1 / k_{1}, 1 / k_{11}, \rho b_{i}$ (banana orbit
(k_{\perp} and k_{11} are perpendicular and parallel component of \vec{k} of fluctuation)
c) $\delta n_{i} / n_{0}, l e l \delta \phi / T_{i}, \delta f_{i} / f_{0}, \delta T_{i} / T_{i 0}, \delta u_{11 i} / v_{T_{1}}$
d) Now, write essential assumptions for 8 pts. the nonlinear electrostatic ion gyrokinetic equation in terms of dimensionless equantities which can be obtained from combinations of quantities listed above. Use the following quantities and more. $\omega / \Omega_{i}, k_{\perp} p_{i}, 1 / k_{11} L_{n}, \delta f_{i} / f_{0}$.
(4) Consider a drift wave eigenmode equation 30 pts. in a sheared magnetic field.

$$
\left\{\rho_{s}^{2} \frac{\partial^{2}}{\partial x^{2}}+\frac{\omega_{* e}}{\omega}-1-k_{y}^{2} \rho_{s}^{2}+\frac{k_{y}^{2} C_{s}^{2}}{\omega^{2} L_{s}^{2}} x^{2}\right\} \delta \phi_{k_{y}}(x)=0
$$

Notations are standard. The solution of this Weber equation is given by $\delta \phi_{k_{y}}(x)=\delta \hat{\phi}_{k y} e^{-\frac{\sigma}{2} x^{2}} H_{e}(\sqrt{\sigma} x)$, where

$$
\sigma= \pm i \frac{k_{y} \Omega_{c_{i}}}{\omega L S} \quad, \quad l=0,1,2, \cdots
$$

H_{e} is the Hermite polynomial. $\omega_{* e}=\frac{k_{y} P_{s} C_{s}}{L_{n}}>0$, and $k_{y}>0$.
a) Calculate the phase velocity of drift wave in y and x

5 pts. directions respectively for $l=0$,
b) Calculate the group velocity of drift wave in y and x topis directions respectively for $l=0$.
c) Choose a physically acceptable eigenmode for $l=0$ 5 pts with a justification (explanation).
d) Write down the eigenvalues of this equation. 10部 Explain the physical meaning of each term.
(5) Consider a drift wave problem in a toroidal plasma $30 p$ ts in which $\vec{B}(r, \theta)=B_{\phi} \hat{\xi}+B_{\theta} \hat{\theta}$.

$$
B \equiv|\vec{B}|=\frac{B_{0} R_{0}}{R_{0}+r \cos \theta}
$$

Notations are standard.
a) Starting from a linearized ion density continuity equation, describe a derivation of the following ion density response in a uniform magnetic field.

$$
\begin{equation*}
\delta n_{i} / n_{0}=\left(\frac{\omega_{* e}}{\omega}-e_{s}^{2} k_{1}^{2}+\frac{c_{s}^{2} k_{11}^{2}}{\omega^{2}}\right)^{101} \delta \phi / T_{e} \tag{1}
\end{equation*}
$$

* Now, consider a toroidal plasma with a magnetic field given above.
b)

5pts. Write down the expressions for ∇B drift and curvature drift of thermal ions.
C) Show that the most important correction to Eq. (1) 5 pts due to nonuniform \vec{B} is the following additional term.

$$
\begin{equation*}
\delta n_{i} / n_{0}=\left(\text { terms in Eq (1)) - } \frac{2 \omega_{d e}}{\omega} \frac{i e l \delta \phi}{T_{e}}\right. \text {, } \tag{2}
\end{equation*}
$$

where $\omega_{\text {de/ }}^{\omega}=\frac{k_{p} P_{s} C_{S}}{R_{0}}\left(\cos \theta k_{\theta}+\sin \theta k_{r}\right)$
d)

10 pts Write down the full expression $E q,(2)$ in the extended poloidal (ballooning) coordinate " 2 ". Sketch your derivation.

