
Coastal Structures (’07 Fall) 
Final Exam (12/18 12:00 – 12/19 10:00) 

 
You have to solve this exam by yourself without talking to other persons. 

 
1. (30) We would like to show that the probability density function of wave height H  
is given by the Rayleigh probability density function for waves of narrow-band normal 
(or Gaussian) process. A narrow-band random process is defined as one whose spectral 
density function is sharply concentrated in the neighborhood of a certain frequency 0ω . 
This implies that the random process  has a constant frequency, and they may be 
written as 
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where  is the amplitude and )(tA )(tε  is the phase; both are random variables. 
   On the other hand, assuming that the random process  is a normal random 
process with zero mean and variance ,  may be written as 
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Here, the coefficients  and  are normally distributed with zero mean and 
variance . 

na nb
2σ

 
(a) By writing tnω  as ttn 00 )( ωωω +− , express  in the form )(tx
 
   ttxttxtx sc 00 sin)(cos)()( ωω −=                                       (5) 
 
   and obtain the expressions of  and . )(txc )(txs

(b) Obtain the expressions of  and  in terms of  and )(txc )(txs )(tA )(tε . 
(c) We may write , ,  and )(txc )(txs )(tA )(tε  as the random variables , ,  

and 
cx sx A

ε  for a given time . Since  and  are the summations of normal 
random variables, they are also normally distributed. It can be proved that  and 

 are statistically independent normal random variables with zero mean and 
variance which is equal to twice the area under the spectral density function of . 
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That is, 
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where )(ωS  = spectral density function of . For proofs, refer to Davenport and 
Root (1958)
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When the random variables X  and Y  are the functions of other random 
variables x  and , and the joint probability density function of y X  and Y , 

, is known, it can be transformed to the joint probability density function of ),( YXf
x  and , , by the following relationship: y ),( yxf

 

   

y
Y

x
Y

y
X

x
X

YXfyxf
yxfnY
yxfnX

∂
∂

∂
∂

∂
∂

∂
∂

=
=
=

),(
),()],([),(                                    (9) 

 
   We may write the joint probability density function  and  as cx sx
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Obtain the joint probability density function ),( εAf using the above    
transformation. 

(d) Obtain the marginal probability density function  by integrating )(Af ),( εAf  
from  to 0 π2  with respect to ε . 

(e) Express  in terms of )(Af H  and  and compare it with the Rayleigh 
probability density function  given by Eq. (7.18) in Dean & Dalrymple’s 
book. 
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1 Davenport, W. B. and Root, W. L. (1958). An introduction to the theory of random signals and noise. 
McGraw-Hill, New York. 



2. (40) Two gages will be used to separate the incident and reflected waves in front of a 
structure as shown in Fig. 1 where lΔ  = unknown distance between the two gages; 

 = water depth;  = incident wave spectrum with  = frequency;  = 
incident significant wave height; and  = incident significant wave period. The 
wavemaker is assumed to be ideal and generate  as specified as input to the 
wavemaker. The unknown gage spacing 
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lΔ  may be selected to maximize the 
incident wave energy resolved by the two gages. 
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where  and  are the maximum and minimum frequencies that can be 
resolved by the two gages on the basis of the recommendation in Goda’s book (p 
359). 
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To simplify the following analysis,  is assumed to be given by the 
Bretschneider-Mitsuyasu spectrum (Eq. (2.10) in Goda’s book). Furthermore, the 
frequencies  and  are assumed to correspond to deep-water and shallow-
water waves, respectively. 
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where  and  are the wave numbers corresponding to  and , 
respectively. 
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(a) Derive an equation based on Eq. (1) for the optimal gage spacing . Show that 

the value of 
lΔ

)/(* ghTsll Δ=Δ  is uniquely determined for given hgTL ss /* = . 
(b) Find the value of  for  = 0.4 m and  = 2 s and show that the 

assumptions given in Eq. (2) are satisfied approximately. You may need the 
Newton-Raphson iteration method. 
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3. (30) A structure is subjected to a characteristic load  that has a mean value S sμ  = 
80 kN and is normally distributed with a standard deviation sσ  = 18 kN. For the 
type of structure we are designing, the characteristic resistance R  is known to have 

rσ  = 20 kN.  
 

(a) We want to design the structure with the safety factor 0.1==Γ srγγ , 0=sZ  
and , so that the mean load can be resisted by the structure 95% of 
the time, where 

64.1−=rZ

sss SZ σμ /)( −= , rrr RZ σμ /)( −= , and rγ  and sγ  are the 
partial safety factors for resistance and load, respectively. Describe the design 
equation in the partial safety factor system. Calculate the mean resistance rμ  
and the probability of failure . fP

(b) We want to design the structure so that the probability of failure is the same as 
that calculated in part (a) but the mean load can be resisted by the structure 50% 
of the time. Calculate the safety factor Γ . 

(c) In the case of , 3.1=Γ 0=sZ  and 64.1−=rZ , calculate the mean resistance 

rμ  and the probability of failure . fP
 


