Plasma Electrodynamics 2
 Solutions

1.a) X (E -plane $\longrightarrow \mathrm{H}$-plane or ϕ for $\theta=\pi / 2 \longrightarrow \theta$ for a constant ϕ)
b) $\mathrm{O} \quad$ c) O
d) X (a very short length compared \rightarrow a length comparable)
e) X (Herzian dipole \rightarrow linear dipole antenna or depends \longrightarrow does not depend)
f) O
g) X (equal currents \rightarrow unequal currents)
h) O
i) O
j) X (proportional to the square \longrightarrow independent $)$
2. a) Spherical components of A :

$$
A_{R}=A_{z} \cos \theta=\frac{\mu_{o} I d l}{4 \pi}\left(\frac{e^{-j \beta R}}{R}\right) \cos \theta, \quad A_{\theta}=-A_{z} \sin \theta=-\frac{\mu_{o} I d l}{4 \pi}\left(\frac{e^{-j \beta R}}{R}\right) \sin \theta, \quad A_{\phi}=0
$$

Magnetic field from $B=\nabla \times A$ and $B=\mu_{o} H$:

$$
H=\hat{\phi} \frac{1}{\mu_{o} R}\left[\frac{\partial}{\partial R}\left(R A_{\theta}\right)-\frac{\partial A_{R}}{\partial \theta}\right]=-\hat{\phi} \frac{I d l}{4 \pi} \beta^{2} \sin \theta\left[\frac{1}{j \beta R}+\frac{1}{(j \beta R)^{2}}\right] e^{-j \beta R}
$$

Electric field from Faraday's law, $E=\frac{1}{j \omega \epsilon_{o}} \nabla \times H$:

$$
\begin{aligned}
& E_{R}=-\frac{I d \ell}{4 \pi} \eta_{0} \beta^{2} 2 \cos \theta\left[\frac{1}{(j \beta R)^{2}}+\frac{1}{(j \beta R)^{3}}\right] e^{-j \beta R} \\
& E_{\theta}=-\frac{I d \ell}{4 \pi} \eta_{0} \beta^{2} \sin \theta\left[\frac{1}{j \beta R}+\frac{1}{(j \beta R)^{2}}+\frac{1}{(j \beta R)^{3}}\right] e^{-j \beta R} \\
& E_{\phi}=0
\end{aligned}
$$

b) In the far-field zone $\left(R \gg \lambda / 2 \pi\right.$, i.e., $\beta R=2 \pi R / \lambda \gg 1$), neglecting $(\beta R)^{-2}$ and $(\beta R)^{-3}$ terms,

$$
\begin{aligned}
& H_{\phi}=j \frac{I d l}{4 \pi}\left(\frac{e^{-j \beta R}}{R}\right) \beta \sin \theta \quad(\mathrm{A} / \mathrm{m}) \\
& E_{\theta}=j \frac{I d l}{4 \pi}\left(\frac{e^{-j \beta R}}{R}\right) \eta_{o} \beta \sin \theta=\eta_{o} H_{\phi} \quad(\mathrm{V} / \mathrm{m})
\end{aligned}
$$

c) Pattern function:

$$
E_{\theta}(\theta, \phi)_{n}=E_{\theta}(\theta, \phi) / E_{\theta}(\theta, \phi)_{\max }
$$

E-plane pattern independent of ϕ at a given R:

$$
\begin{aligned}
E_{\theta}(\theta, \phi)_{n}= & \text { Normalized }\left|E_{\theta}\right|=|\sin \theta| \\
& \text { for } 0 \leq \theta \leq \pi, 0 \leq \phi \leq 2 \pi
\end{aligned}
$$

d) H -plane pattern for for $\theta=\pi / 2$ at a given R :

$$
\begin{aligned}
& E_{\theta}(\theta, \phi)_{n}=|\sin \theta|= 1 \\
& \quad \text { for } \theta=\pi / 2, \quad 0 \leq \phi \leq 2 \pi
\end{aligned}
$$

e) $|E|=\frac{2 E_{m}}{R_{o}}|F(\theta, \phi)|\left|\cos \frac{\psi}{2}\right|$ where $\psi=\beta d \sin \theta \cos \phi+\xi$

Consider H -plane ($\theta=\pi / 2$) radiation patterns of two-element parallel dipole array directed in z and placed along the x-axis.
Broadside array factor for $d=\lambda / 2(\beta d=\pi), \quad \xi=0$ (in phase):

$$
\begin{aligned}
& \begin{aligned}
|A(\phi)|_{n} & =\left|\cos \frac{\psi}{2}\right|=\left|\cos \frac{1}{2}(\beta d \cos \phi+\xi)\right| \\
& =\left|\cos \left(\frac{\pi}{2} \cos \phi\right)\right| \\
\text { At } \phi & = \pm \pi / 2, \quad \exists|E|_{\max } .
\end{aligned} \\
& \text { At } \phi=0, \pi, \quad \exists|E|_{\min }=0 .
\end{aligned}
$$

Main beams only, no side lobes
f) Broadside pattern by the principle of pattern multiplication using the above results:

$$
|E|=\frac{4 E_{m}}{R_{o}}\left|\cos \left(\frac{\pi}{2} \cos \phi\right)\right|^{2}
$$

More directive than the two-element array Main beams only, no sidelobes

g) Array factor of an 3-element uniform linear array:

$$
\begin{aligned}
& A(\psi)=1+e^{j \psi}+e^{j 2 \psi} \\
&=\frac{1-e^{j 3 \psi}}{1-e^{j \psi}}=\frac{e^{j 3 \psi / 2}}{e^{j \psi / 2}}\left(\frac{e^{j 3 \psi / 2}-e^{-j 3 \psi / 2}}{e^{j \psi / 2}-e^{-j \psi / 2}}\right) \\
&=e^{j \psi} \frac{\sin (3 \psi / 2)}{\sin (\psi / 2)} \\
& \Rightarrow \quad|A(\psi)|=\left|\frac{\sin (3 \psi / 2)}{\sin (\psi / 2)}\right|
\end{aligned}
$$

For $\psi=0, \quad|A(\psi)|_{\max }=3$
Therefore, the normalized array factor becomes

$$
|A(\psi)|_{n} \equiv \frac{|A(\psi)|}{|A(\psi)|_{\max }}=\frac{1}{3}\left|\frac{\sin (3 \psi / 2)}{\sin (\psi / 2)}\right|
$$

3. Given: Two identical antennas with $G_{D}=1,000, \quad r=10 \mathrm{~km}=10^{4} \mathrm{~m}$,

$$
f=300 \mathrm{MHz}=3 \times 10^{8} \mathrm{~Hz}, \quad P_{t}=16 \pi^{2} \mathrm{~W}
$$

a) $\lambda=c / f=3 \times 10^{8} / 3 \times 10^{8}=1(\mathrm{~m})$

$$
P_{L}=\left(\frac{G_{D} \lambda}{4 \pi r}\right)^{2} P_{t}=\left(\frac{10^{3} \times 1}{4 \pi \times 10^{4}}\right)^{2}(4 \pi)^{2}=0.01(W)=10(\mathrm{~mW})
$$

b) $\mathscr{P}_{a v}=\frac{P_{t}}{4 \pi r^{2}} G_{D 1}=\frac{E_{i}^{2}}{240 \pi}$

$$
\begin{aligned}
& \Rightarrow \quad E_{i}^{2}=\frac{240 \pi P_{t}}{4 \pi r^{2}} G_{D}=\frac{240 \pi \times(4 \pi)^{2}}{4 \pi \times\left(10^{4}\right)^{2}} \times 1000 \\
& \Rightarrow \quad E_{i}=\frac{4 \pi}{10^{4}} \sqrt{6 \times 10^{4}}=\frac{4 \sqrt{6} \pi}{100}(\mathrm{~V} / \mathrm{m}) \approx 0.308(\mathrm{~V} / \mathrm{m})
\end{aligned}
$$

4. Given: a very thin center-fed half-wave dipole lying along the z-axis with $I(z)=I_{o} \cos 2 \pi z$.
a) Current continuity equation (Charge conservation equation):

$$
\frac{\partial \rho_{v}}{\partial t}+\nabla \cdot J=0
$$

For time-harmonic fields $\left(e^{j \omega t}\right)$ on a thin half-wave dipole, $j \omega \rho_{l}+\frac{d I(z)}{d z}=0 \Rightarrow$ Charge distribution: $\rho_{l}=\frac{j}{\omega} \frac{d I(z)}{d z}$ $\Rightarrow \quad \rho_{l}=\frac{j}{\omega} \frac{d}{d z}\left(I_{o} \cos 2 \pi z\right)=-\frac{j \beta}{\omega} I_{o} \sin 2 \pi z=-j \frac{I_{o}}{c} \sin 2 \pi z$

b) $\beta=2 \pi / \lambda=2 \pi \quad \Rightarrow \quad \lambda=1(m)$
5. E-plane pattern of a Hertzian dipole:

$$
E_{\theta}(\theta, \phi)_{n}=|\sin \theta| \quad \text { for } 0 \leq \theta \leq \pi, 0 \leq \phi \leq 2 \pi
$$

Maximum radiation field: $E_{\max }=E_{\theta}(\pi / 2, \phi)_{n}=1$
Half-power points: $\quad E_{\theta}\left(\theta_{1}, \phi\right)_{n}=\frac{E_{\max }}{\sqrt{2}}=\frac{1}{\sqrt{2}}=\left|\sin \theta_{1}\right|$

$$
\Rightarrow \quad \theta_{1}=\pi / 4,3 \pi / 4 \quad \text { or } \quad\left(45^{\circ}, 135^{\circ}\right)
$$

\therefore Beamwidth: $\Delta \theta=3 \pi / 4-\pi / 4=\pi / 2$ or 90°

