1. ( 35 points) Two bodies $A\left(m_{a}=40 \mathrm{~kg}\right)$ and $B\left(m_{b}=30 \mathrm{~kg}\right)$ are connected by a cable as shown in Fig.1. The kinetic coefficient of friction between body $A$ and the inclined surface is $\mu_{\mathrm{k}}=0.25$, and the system is released from rest. During motion of the bodies, determine
(a) The acceleration of body A ( $\mathbf{1 5}$ points)
(b) The tension in the cable connecting the bodies ( 10 points)
(c) The velocity of body $B$ after 5 s of motion ( 10 points)


Fig. 1
2. ( 30 points) The periodic time of an earth satellite in a circular polar orbit is 120 minutes.
(a) Determine the altitude h of the satellite ( $\mathbf{1 5}$ points)
(b) Determine the time during which the satellite is above the horizon for an observer located at the North Pole. (15 points)


Fig. 2
3. ( 35 points) A 23.1 kg sphere A of radius 90 mm moving with a velocity of magnitude $v_{0}=2$ $\mathrm{m} / \mathrm{s}$ strikes a 2.1 kg sphere $B$ of radius 40 mm which is hanging from an inextensible cord and is initially at rest. Knowing that sphere $B$ swings to a maximum height $h=0.25 \mathrm{~m}$.
(a) Set up the equation about coefficient of restitution $\boldsymbol{e}$ (15 points)
(b) Determine the coefficient of restitution $\boldsymbol{e}$ between the two spheres


Fig. 3

