Innovative Ship Design

- 2nd Exam -Saturday, May 26th, 2012

Part I. Subdivision and Damage Stability, Saturday, May 26th, 2012, 13:00-14:00 (1 hour) Part II. Computational Ship Stability, Saturday, May 26th, 2012, 14:00-16:00 (2hours)

Name	
SNU ID #	

Note: Budget your time wisely. Some parts of this exam could take you much longer than others. Move on if you are stuck and return to the problem later.

Problem Number		1		2		3		4				5	6	7	8				Total
		1	2	1	2	1	2	1	2	3	4	3	U	,	1	2	3	4	10121
Grader	Max	2	3	5	3	5	3	4	5	5	5	4	10	4	7	15	5	15	/100
	Score																		

[PART 1] Subdivision and Damage Stability

1. Figure 1 shows the elevation view of a ship. Answer the following questions about the subdivision length L_s .

1.1. [2 points] Explain the definition of subdivision length $L_{s.}$

1.2. [3 points] Mark the subdivision length L_s in Figure 1.

[Figure 1: Elevation view of a ship]

2. Consider a ship of **subdivision length 100m** and **depth 12m** in Figure 2, assume that the **zone 2 is damaged**, and answer the following questions.

[Figure 2: Damaged ship of subdivision length 100m]

2.1. [5 points] The subdivision attained index A can be determined as follows

$$A = 0.4A_s + 0.4A_p + 0.2A_l$$

, where A_s , A_p , and A_l are calculated at deepest subdivision draft d_s , light service draft d_l , and partial subdivision draft d_p , respectively. The results of trim and stability calculation are provided as follows.

- Trim at deepest subdivision draft: 1.6m
- Trim at light service draft: 0.4m
- Trim at partial subdivision draft: 1.2m

How many times do we have to calculate the attained index A? And how much of meter of trim must be considered for each draft when obtaining the value of each A?

2.2. [3 points] Figure 2 shows the section view of zone 2.

1) For obtaining the value of A_l , which draft must be considered to determine the survivability S_i ?

2) For obtaining the value of A_l , which draft must be considered to determine the probability of damage P_i ?

3) Mark b_1 , which is transverse distance between the shell and the longitudinal bulkhead at k=1, in Figure 2

3. Consider a ship as shown in Figure 3, and assume that the zone 3, 4, 5 are damaged.

3.1. [5 points] Determine how many b_i , which is transverse distance between the shell and the longitudinal bulkhead at k=i, should be considered for calculating r_i , and explain why.

3.2. [3 points] Determine damaged compartment for each b_i

4. Consider a box-shaped ship as shown in Figure 4, and answer the following questions.

[Figure 4: Compartment Arrangement of a Box-Shaped Ship]

4.1. [4 points] Generate all possible 10 damage cases of zone 3, referring the given examples of 3 damage cases considering lesser extent and higher extent.

NO3. W.W.B. TK (S), NO3 DB W.B. TK (S).
NO3. W.W.B. TK (S).
NO3. W.W.B. TK (S), NO3 DB W.B. TK (S), PASS. (S).
...
...
10. ...

4.2. [5 points] Calculate p_i for damage case 1

4.3. [5 points] Calculate r_i for damage case 1

4.4. [5 points] Calculate v_m for damage case 1

[PART 2] Computational Ship Stability

A box-shaped ship of 100 meter length, 40 meter breadth, 30 meter height and 9 meter draft is floating in fresh water. The ship's initial total weight is $3.6 \times 10^5 [kN]$. When a compartment is damaged and flooded as shown in Figure 1, the position and orientation of the ship will change.

b-frame : body-fixed reference frame, $(x_b y_b z_b \text{ axis})$ F_G : the gravitational force exerted on the ship, that is weight of the ship F_B : the buoyant force exerted on the ship (initial state)

 F_{ext} : the external force exerted on the ship

G: center of gravity of the ship *B*: initial center of buoyancy of the ship

 B_1 : shifted center of buoyancy after flooding the damaged cargo.

[Figure 5: A box-shaped ship whose compartment is damaged]

* Eq. (1) is the linearized governing equation for the ship in static equilibrium.

$$\begin{bmatrix} F_{z}^{*} - F_{z}\left(z_{n}^{(k)}, \phi^{(k)}, \theta^{(k)}\right) \\ M_{T}^{*} - M_{L}\left(z_{n}^{(k)}, \phi^{(k)}, \theta^{(k)}\right) \end{bmatrix} = \begin{bmatrix} \frac{\partial F_{B}}{\partial z_{n}} + \frac{\partial F_{G}}{\partial z_{n}} + \frac{\partial F_{ext}}{\partial z_{n}} & \frac{\partial F_{B}}{\partial \phi} + \frac{\partial F_{G}}{\partial \phi} + \frac{\partial F_{ext}}{\partial \phi} & \frac{\partial F_{B}}{\partial \theta} + \frac{\partial F_{ext}}{\partial \theta} \\ \frac{\partial M_{BT}}{\partial z_{n}} + \frac{\partial M_{GT}}{\partial z_{n}} + \frac{\partial M_{exT}}{\partial z_{n}} & \frac{\partial M_{BT}}{\partial \phi} + \frac{\partial M_{GT}}{\partial \phi} + \frac{\partial M_{ext}}{\partial \phi} & \frac{\partial M_{BT}}{\partial \theta} + \frac{\partial M_{ext}}{\partial \theta} + \frac{\partial M_{ext}}{\partial \theta} \\ \frac{\partial M_{BL}}{\partial z_{n}} + \frac{\partial M_{GL}}{\partial z_{n}} + \frac{\partial M_{ext}}{\partial z_{n}} & \frac{\partial M_{BL}}{\partial \phi} + \frac{\partial M_{ext}}{\partial \phi} + \frac{\partial M_{ext}}{\partial \phi} & \frac{\partial M_{BL}}{\partial \theta} + \frac{\partial M_{ext}}{\partial \theta} + \frac{\partial M_{ext}}{\partial \theta} \end{bmatrix}_{\substack{z_{n} = z, (1) \\ z_{n} = z, (1)}} \begin{bmatrix} \delta z_{n}^{(k)} \\ \delta \phi^{(k)} \\ \delta \phi^{(k)} \end{bmatrix}$$
Eq. (1)

The partial derivatives of the Eq. (1) can be expressed in terms of the area, moment of area, moment of inertia of the waterplane area, volume and moment of volume as follows, and are derived **based on the lost buoyancy method.**

$$\begin{bmatrix} F_{z}^{*} - F_{z}^{(k)} \\ M_{T}^{*} - M_{L}^{(k)} \end{bmatrix} = \begin{bmatrix} -\rho g A_{wp}^{(k)} & -\rho g A_{wp}^{(k)} \cdot {}^{n} y_{F^{(k)}/E} \\ -(-\mu_{F} \cdot \rho g a_{wp}^{(k)} \cdot {}^{n} y_{F^{(k)}/E} \\ -\rho g A_{wp}^{(k)} \cdot {}^{n} y_{F^{(k)}/E} \\ -(-\mu_{F} \cdot \rho g a_{wp}^{(k)} \cdot {}^{n} y_{F^{(k)}/E} \\ -(-\mu_{F} \cdot \rho g a_{wp}^{(k)} \cdot {}^{n} y_{F^{(k)}/E} \\ -(-\mu_{F} \cdot \rho g a_{wp}^{(k)} \cdot {}^{n} y_{F^{(k)}/E} \\ -\rho g A_{wp}^{(k)} \cdot {}^{n} x_{F^{(k)}/E} \\ -\rho g A_{wp}^{(k)} \cdot {}^{n} x_{F^{(k)}/E} \\ -\mu_{F} \cdot \rho g a_{wp}^{(k)} \cdot {}^{n} x_{F^{(k)}/E} \\ -\mu_{F} \cdot \rho g a_{wp}^{(k)} \cdot {}^{n} x_{F^{(k)}/E} \\ -\mu_{F} \cdot \rho g a_{wp}^{(k)} \cdot {}^{n} x_{F^{(k)}/E} \\ -\mu_{F} \cdot \rho g a_{wp}^{(k)} \cdot {}^{n} x_{F^{(k)}/E} \\ -\mu_{F} \cdot \rho g a_{wp}^{(k)} \cdot {}^{n} x_{F^{(k)}/E} \\ -\mu_{F} \cdot \rho g a_{wp}^{(k)} \cdot {}^{n} x_{F^{(k)}/E} \\ -\mu_{F} \cdot \rho g a_{wp}^{(k)} \cdot {}^{n} x_{F^{(k)}/E} \\ -\mu_{F} \cdot \rho g a_{wp}^{(k)} \cdot {}^{n} x_{F^{(k)}/E} \\ -\mu_{F} \cdot \rho g a_{wp}^{(k)} \cdot {}^{n} x_{F^{(k)}/E} \\ -\mu_{F} \cdot \rho g a_{wp}^{(k)} \cdot {}^{n} x_{F^{(k)}/E} \\ -\mu_{F} \cdot \rho g a_{wp}^{(k)} \cdot {}^{n} x_{F^{(k)}/E} \\ -\mu_{F} \cdot \rho g a_{wp}^{(k)} \cdot {}^{n} x_{F^{(k)}/E} \\ -\mu_{F} \cdot \rho g a_{wp}^{(k)} \cdot {}^{n} x_{F^{(k)}/E} \\ -\mu_{F} \cdot \rho g a_{wp}^{(k)} \cdot {}^{n} x_{F^{(k)}/E} \\ -\mu_{F} \cdot \rho g a_{wp}^{(k)} \cdot {}^{n} x_{F^{(k)}/E} \\ -\mu_{F} \cdot \rho g a_{wp}^{(k)} \cdot {}^{n} x_{F^{(k)}/E} \\ -\mu_{F} \cdot \rho g a_{wp}^{(k)} \cdot {}^{n} x_{F^{(k)}/E} \\ -\mu_{F} \cdot \rho g a_{wp}^{(k)} \cdot {}^{n} x_{F^{(k)}/E} \\ -\mu_{F} \cdot \rho g a_{wp}^{(k)} \cdot {}^{n} x_{F^{(k)}/E} \\ -\mu_{F} \cdot \rho g a_{wp}^{(k)} \cdot {}^{n} x_{F^{(k)}/E} \\ -\mu_{F} \cdot \rho g a_{wp}^{(k)} \cdot {}^{n} x_{F^{(k)}/E} \\ -\mu_{F} \cdot \rho g a_{wp}^{(k)} \cdot {}^{n} x_{F^{(k)}/E} \\ -\mu_{F} \cdot \rho g a_{wp}^{(k)} \cdot {}^{n} x_{F^{(k)}/E} \\ -\mu_{F} \cdot \rho g a_{wp}^{(k)} \cdot {}^{n} x_{F^{(k)}/E} \\ -\mu_{F} \cdot \rho g a_{wp}^{(k)} \cdot {}^{n} x_{F^{(k)}/E} \\ -\mu_{F} \cdot \rho g a_{wp}^{(k)} \cdot {}^{n} x_{F^{(k)}/E} \\ -\mu_{F} \cdot \rho g a_{wp}^{(k)} \cdot {}^{n} x_{F^{(k)}/E} \\ -\mu_{F} \cdot \rho g a_{wp}^{(k)} \cdot {}^{n} x_{F^{(k)}/E} \\ -\mu_{F} \cdot \rho g a_{wp}^{(k)} \cdot {}^{n} x_{F^{(k)}/E} \\ -\mu_{F} \cdot \rho g a_{wp}^{(k)} \\ -\mu_{F} \cdot \rho g a_{wp}^{(k)} \cdot {}^{n} x_{F^{(k)}/E} \\ -\mu_{F} \cdot \rho g a_{wp}^{(k)$$

 F_G : gravitational force exerted on a ship

 M_T : transverse moment of a ship about x_n axis

 M_L : longitudinal moment of a ship about y_n axis

 $A_{WP}^{(k)}$: waterplane area of a ship at kth step

 $I_T^{(k)}$: transverse moment of inertia of the waterplane area of a ship about x_n axis at kth step

 $I_L^{(k)}$: longitudinal moment of inertia of the waterplane area of a ship about y_n axis at kth step

 $I_p^{(k)}$: centrifugal moment of the waterplane area of a ship about x_n and y_n axis at kth step

 F_B : buoyant force exerted on a ship

 F_{ext} : external force exerted on a ship

 ${}^{n}x_{F^{(k)}/E}$: x_n coordinate of centroid of the waterplane area of a ship

 ${}^{n}y_{F^{(k)}/E}$: y_n coordinate of centroid of the waterplane area of a ship

 ${}^{n}z_{B^{(k)}/E}$: z_{n} coordinate of center of the displaced volume of a ship

 ${}^{n}z_{G^{(k)}/E}$: z_{n} coordinate of center of mass of the ship

 $\delta z^{(k)}$: change in the draft at kth step

 $\delta \phi^{(k)}$: change in the angle of heel at kth step

 $\delta \theta^{(k)}$: change in the angle of trim at kth step

 μ_V : permeability of a compartment

 μ_F : surface permeability of a compartment

 $a_{WP}^{(k)}$: waterplane area of a flooded compartment at kth step

 $i_T^{(k)}$: transverse moment of inertia of the waterplane area of a flooded compartment about x_n axis at kth step

 $i_L^{(k)}$: longitudinal moment of inertia of the waterplane area of a flooded compartment about y_n axis at kth step

 $i_p^{(k)}$: centrifugal moment of the waterplane area of a flooded compartment about x_n and y_n axis at kth step

 ${}^{n}x_{f^{(k)}/E}$: x_n coordinate of centroid of the waterplane area of a flooded compartment at kth step

 ${}^{n}y_{f^{(k)}/E}$: y_n coordinate of centroid of the waterplane area of a flooded compartment at kth step

 ${}^{n}z_{\mathcal{G}_{n,k}^{(k)}/E}$: z_n coordinate of center of the submerged volume of a flooded compartment at kth step

By using the Eq. (2) the position and orientation of the ship in static equilibrium state can be calculated. Answer the following questions for the calculation of the position and orientation of the ship.

5. [4 points] Explain the meaning of the elements of the 3 by 3 matrix in the Eq. (2).

1) $-\rho g A_{WP}$

2) $-\rho g(I_T + z_B V)$

6. [10 points] Derive the following term among the (2,2) element of the 3 by 3 matrix of the Eq. (2).

$$-\rho g(^{n} z_{B^{(k)}/E} \nabla^{(k)} + I_{T}^{(k)})$$

7. [4 points] The following term is in the (2,2) element of the 3 by 3 matrix of the Eq. (2).

$$- {n z_{G^{(k)}/E}} \cdot F_G$$

This term means that an additional heeling moment is caused by gravitational force. Explain the reason why this heeling moment is caused by heel.

8. Answer the following question to calculate the static equilibrium position and orientation according to Figure 1 and Equation (2).

[Figure 6: Second moment of area of parallelogram]

8.1. [7 points] Carry out the first iteration to obtain the static equilibrium position and orientation of the ship using the lost buoyancy method.

8.2. [15 points] Check for the ship to be in the static equilibrium at the position and orientation of the first iteration.

8.3. [5 points] Explain the reason why we cannot calculate the exact static equilibrium position in the first iteration.

8.4. [15 points] Carry out the second iteration to obtain the static equilibrium position and orientation of the ship using the lost buoyancy method.