Advanced rock mechanics

Semester 1, 2009

Mid-term Exam (20 April) 14:30 - 17:30

* Answer the questions in English.

- 1. Discuss the conditions in which the symmetry condition holds for stress and strain tensors (10).
- 2. Derive the equations of stress equilibrium using the divergence theorem (15).
- 3. Evaluate the following expressions involving the Kronecker delta δ_{ij} for a range of three on the indices (10).
 (a) δ_{ii}δ_{ii}
 - (b) $\delta_{ii}\delta_{ik}\delta_{ik}$
 - (c) $\delta_{ii}A_{ik}$
- 4. Derive compatibility equation in two dimensions and explain the physical meaning of the compatibility equation (15).
- 5. Derive the Navier's Equations, which is the equations of stress equilibrium expressed in terms of displacements (15).
- 6. Explain the Saint Venant's Principle (10).
- 7. The relationship between horizontal and vertical stress can be expressed as $\sigma_H = \frac{v}{1-v} \sigma_V$ if we assume uniaxial strain condition. Derive this equation from the constitutive equations of isotropic material. Using this equation and assuming that a rock element is subjected to $\sigma_v = \sigma_H$ at a depth of 1000 m and erosion causes a removal of 500 m of overburden over millions of years, determine the stress state at a depth of 500m and ratio of horizontal to vertical stress after erosion. The density and Poisson's ratio of rock is 2600 kg/m³ and 0.25, respectively (15).
- 8. Number of independent elastic constants for anisotropic material reduces from 81 to 21. Explain how the reduction is done (10).

* Reference equations are listed below, however, feel free to use other equations that may be relevant in answering the questions.

$$T_{i} = \tau_{ji}n_{j}$$

$$\tau_{ij}' = \beta_{im}\beta_{jn}\tau_{mn}$$

$$\varepsilon_{ij} = \frac{1}{2}(u_{i,j} + u_{j,i})$$

$$\tau_{ji,j} + F_{i} = 0$$

$$\varepsilon_{ij} = \frac{1+\nu}{E}\tau_{ij} - \frac{\nu}{E}\delta_{ij}\tau_{kk}$$

$$\tau_{ij} = \lambda\varepsilon_{\alpha\alpha}\delta_{ij} + 2\mu\varepsilon_{ij}$$

$$\mu u_{i,jj} + (\lambda + \mu)u_{j,ji} + F_{i} = 0$$