1. $P_{1}=1 \mathrm{~atm} . V_{1}=1 \mathrm{l} . T_{1}=373 \mathrm{~K}$.

$$
P_{2}=P_{2}, V_{2}=2 l, T_{2}=3 n 3 \mathrm{~K} .
$$

$P_{3}=P_{2}, \quad V_{3}=V, T_{3}=T_{3}$.
\downarrow reversible isobaric compression, w_{2}.
$P_{1}=1 \mathrm{~atm}, V_{1}=1 \ell, T_{1}=373 \mathrm{~K}$. \downarrow reversible adiabatic compression, W_{3}.

(1) reversible isothermal expansion.

$$
\begin{aligned}
& d U=\delta q-\delta w=0 \quad \therefore \delta w=\delta q=P d V . \\
& w_{1}=\int P d V=\int \frac{n R T}{V} d V=n R T \ln \frac{V_{f}}{V_{i}}=n R T \ln 2 .
\end{aligned}
$$

from the ideal gas law, $n=\frac{P_{1} V_{1}}{R T}=0.0321 \mathrm{moll}$.

$$
\therefore w_{1}=0.032 n \cdot 8.3144 \cdot 373 \cdot \ln 2=70.29 \mathrm{~J} .
$$

(2) reversible isobaric compression.

$$
W_{2}=\int P d V=P_{2}\left(V_{3}-V_{2}\right)
$$

Since, $P_{2}=P_{3}=\frac{n R T_{2}}{V_{2}}=0.5 \mathrm{dm}$. and $P_{3} V_{3}^{\gamma}=P_{1} V_{1}^{r} \therefore V_{3}=\left(\frac{P_{1}}{P_{3}}\right)^{V} \cdot V_{1}=2^{\frac{3}{5}}=1.516 \mathrm{l}$. $\left(\gamma=\frac{5}{3}\right.$ for monoatomic gas.)

$$
\therefore w_{2}=0.5(1.516-2) \cdot 101.3=-24.51 \mathrm{~J} .
$$

(3) reversible adiabatic compression.

$$
\begin{aligned}
d V & =-\delta \omega=n c_{v} d T . \quad\left(c_{\nu}=\frac{3}{2} R \text { for monoatomic gas }\right) . \\
\therefore \omega_{3} & =-\int n c_{v} d T=-\frac{3}{2} n R\left(T_{1}-T_{3}\right)=-\frac{3}{2} \times 0.032 \eta \times 8.3144 \times\left(3 n 3-T_{3}\right) .
\end{aligned}
$$

since $T_{3}=\frac{P_{3} V_{3}}{n R}=282.5 \mathrm{~K}$.

$$
\therefore w_{3}=-\frac{3}{2} \times 0.032 \eta \times 8.3144 \times(3 n 3-282.5)=-36.91 \text { 乐. }
$$

$$
w=w_{1}+w_{2}+w_{3}=90.29-24.51-36.91=8.8 \eta \mathrm{~J} .
$$

2. (a). First law.

$$
\begin{equation*}
d V=\delta q-\delta w=\delta q-P d V \tag{1}
\end{equation*}
$$

Second law.

$$
\begin{equation*}
d S=\frac{\delta q_{r e v}}{T} . \rightarrow \delta q_{r e v}=T d S \tag{2}
\end{equation*}
$$

combining (1) and (3) giVes, $\quad d V=T d S-P d V$.
(b).

$$
\begin{aligned}
H & =U+P V \\
d H & =d V+P d V+V d P \\
& =T d S-P d V+P d V+V d P \\
& =T d S+V d P \\
G & =H-T S \\
d G & =d H-T d S-S d T \\
& =T d S+V d P-T d S-S d T \\
& =V d P-S d T
\end{aligned}
$$

(c).

$$
\begin{aligned}
& G=H-T S . \\
& d G=V d P-S d T . \quad \rightarrow\left(\frac{\partial G}{\partial T}\right)_{P}=-S . \quad \text { at constant pressure. } \\
& G=H+T\left(\frac{d G}{d T}\right) \quad \text { or } \quad G d T=H d T+T d G .
\end{aligned}
$$

dividing throughout by T^{2} gives.

$$
\begin{gathered}
\frac{T d G-G d T}{T^{2}}=-\frac{H d T}{T^{2}} \text { or } \frac{T\left(\frac{d G}{d T}\right)-G}{T^{2}}=-\frac{H}{T^{2}} \\
\therefore \frac{d(G / T)}{d T} \\
\therefore \frac{d(G / T)}{d T}=-\frac{H}{T^{2}}
\end{gathered}
$$

this equation allows ΔH to be obtained from a measurement of the Δt, vice versa.
(d). $d G=-S d T+V d P+\sum_{i=1}^{k}\left(\frac{\partial G}{\partial n_{i}}\right)_{T \cdot P \cdot n_{j} \ldots} d n_{i}$

The term $\left(\frac{\partial G}{\partial n_{i}}\right)_{T_{,}, p_{1}, \ldots}$ is called thechemical potential of species i, μ_{i}

$$
\therefore d G T=-S d T+V d P+\sum_{i} \mu_{i} d n_{i}
$$

Similarly.

$$
\begin{aligned}
d V & =T d S-P d V+\sum_{i=1}^{k}\left(\frac{\partial V}{\partial n_{i}}\right)_{S_{-} V, n_{j} \ldots .} d n_{i} \\
& =T d S-P d V+\sum \mu_{i} d n_{i} . \\
d H & =T d S-V d P+\sum_{i=1}^{K}\left(\frac{\partial H}{\partial n_{i}}\right)_{S_{1} P_{, n_{j} \ldots}} d n_{i} \\
& =T d S-V d P+\sum \mu_{i} d n_{i} . \\
d A & =-S d T+P d V+\sum_{i=1}^{k}\left(\frac{\partial A}{\partial n_{i}}\right)_{T_{i} V_{1, n_{j} \ldots}} d n_{i} \\
& =-S d T+P d V+\sum \mu_{i} d n_{i} .
\end{aligned}
$$

3. (a).

A B 1 mole 1 mole	$d S=\frac{\delta q}{T}=\frac{P d V}{T}=n R \frac{d V}{V}$.
1 atm 1 atm.	

when the partition is removed,
the volume occupied by imole of A doubles, $\therefore \Delta S_{A}=n R \ln 2=R \ln 2 .(n=1)$. the volume occupied by 1 mole of B doubles, $\therefore \Delta S_{B}=R \ln 2$.

$$
\therefore \Delta S_{\text {total }}=\Delta S_{A}+\Delta S_{B}=R \ln 4 .=11.53 \mathrm{~J} / \mathrm{K}
$$

(b). number of atoms of $A u, n_{A u}=\frac{10}{198} \times 6.023 \times 10^{23}$. number of atoms of Ag, $n_{\text {Ag }}=\frac{20}{10 n .9} \times 6.023 \times 10^{23}$.

$$
\begin{aligned}
\Delta S_{\text {conf. }} & =k \ln \frac{\left(n_{A u}+n_{A g}\right)!}{n_{A u}!n_{A g}!} \\
& =k\left[\left(n_{A u}+n_{A g}\right) \ln \left(n_{A n}+n_{A g}\right)-n_{A u} \ln n_{A u}-n_{A g} \ln n_{A g}\right] . \\
& =1.3805 \times 10^{-23}[7.574-1.535-5.925] \times 10^{24} \\
& =1.02 \mathrm{~J} / K
\end{aligned}
$$

4. An adiabatic process, $d S=\frac{\delta q}{T}=0$. isentropic process.

$$
\therefore\left(\frac{\partial T}{\partial P}\right)_{S}
$$

from the upstairs - downstairs - inside - out formula,

$$
\begin{equation*}
\left(\frac{\partial T}{\partial P}\right)_{S}\left(\frac{\partial P}{\partial S}\right)_{T}\left(\frac{\partial S}{\partial T}\right)_{P}=-1 \tag{1}
\end{equation*}
$$

and, since

$$
\begin{gather*}
c_{p}=T\left(\frac{\partial S}{\partial T}\right)_{p} \text { gives } \\
\left(\frac{\partial S}{\partial T}\right)_{p}=\frac{C_{p}}{T} \tag{2}
\end{gather*}
$$

From the Maxwell's relation,

$$
\left(\frac{\partial P}{\partial S}\right)_{T}=-\left(\frac{\partial T}{\partial V}\right)_{P}
$$

and the isobaric thermal expansivity is defied as

$$
\alpha=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P} \text { or }\left(\frac{\partial V}{\partial T}\right)_{P}=\alpha V \text {. }
$$

(2,),(2,(4) into (1) gives

$$
\left.\begin{array}{l}
\left(\frac{\partial T}{\partial P}\right)_{S}\left(\frac{\partial P}{\partial S}\right)_{T}\left(\frac{C_{P}}{T}\right)=1 \\
\left(\frac{\partial T}{\partial P}\right)_{S}\left(-\frac{1}{V_{\alpha}}\right)\left(\frac{C_{P}}{T}\right)=-1 \\
\therefore\left(\frac{\partial T}{\partial P}\right)_{S}
\end{array}\right) \frac{T V_{\alpha}}{C_{p}} .800 \mathrm{MPa} .
$$

5. (a). At constant pressure, $d H=c_{p} d T$.

Integration between $\left(T_{2}, P\right)$ and $\left(T_{1}, P\right)$ gives.

$$
\begin{equation*}
\Delta H=H\left(T_{2}, P\right)-H\left(T_{1}, P\right)=\int_{T_{1}}^{T_{2}} C_{p} d T . \tag{1}
\end{equation*}
$$

It constant pret temperature
$d H=\left(\frac{\partial H}{\partial P}\right)_{T} d P$, since $d H=T d S+V d P$, and thus

$$
\left(\frac{\partial H}{\partial P}\right)_{T}=T\left(\frac{\partial S}{\partial P}\right)_{T}+V
$$

From Maxwell's equation, $\left(\frac{\partial S}{\partial P}\right)_{T}=-\left(\frac{\partial V}{\partial T}\right)_{P}$, in which case.

$$
\begin{aligned}
\left(\frac{\partial H}{\partial P}\right)_{T} & =-T\left(\frac{\partial V}{\partial T}\right)_{P}+V \\
& =-T \alpha V+V=V(1-\alpha T) .
\end{aligned}
$$

Integration between $\left(P_{2}, T\right)$ and $\left(P_{1}, T\right)$ gives

$$
\begin{equation*}
\Delta H=H\left(P_{2}, T\right)-H\left(P_{1}, T\right)=\int_{P_{1}}^{P_{2}} V(1-\alpha T) d P \tag{2}
\end{equation*}
$$

(1)+(2) gives.

$$
\Delta H=H\left(P_{2}, T_{2}\right)-H\left(P_{1}, T_{1}\right)=\int_{T_{1}}^{T_{2}} c p d T+\int_{p_{1}}^{P_{2}} V(1-\alpha T) d P,
$$

5. (b)

$$
d S=\frac{\delta f}{T}
$$

at constant pressure,

$$
\begin{align*}
& d S=\left(\frac{\delta q}{T}\right)_{p}=\left(\frac{d H}{T}\right)_{p}=C_{p} \frac{d T}{T} \\
& \therefore \Delta S=S\left(T_{2}, p\right)-S\left(T_{1}, p\right)=\int_{T_{1}}^{T_{2}} \frac{C_{p}}{T} d T
\end{align*}
$$

At constant temperature,

$$
d S=\left(\frac{\partial S}{\partial P}\right)_{T} d P
$$

From Maxwell's equation, $\left(\frac{\partial S}{\partial P}\right)_{T}=-\left(\frac{\partial V}{\partial T}\right)_{P}=-\alpha V$

$$
\begin{equation*}
\therefore \Delta S=S\left(P_{2}, T\right)-S\left(P_{1}, T\right)=-\int_{P_{1}}^{P_{2}} \alpha V d P^{2} . \tag{2}
\end{equation*}
$$

(1)+(2) gives.

$$
\Delta S=S\left(P_{2}, T_{2}\right)-S\left(P_{1}, T_{1}\right)=\int_{T_{1}}^{T_{2}} \frac{C_{P}}{T} d T-\int_{P_{1}}^{p_{2}} \alpha V d P
$$

5.(c). An isothermal expansion of tribal gas from V_{1} to $2 V_{1}$.
constant T.

$$
\begin{aligned}
\Delta S & =-\int_{P_{1}}^{P_{2}} a V d P \\
& =-\int_{p_{1}}^{P_{2}} \alpha \cdot \frac{n R T}{P} d P \\
& =-\alpha n R T \ln \frac{P_{2}}{P_{1}} \\
& =\alpha n R T \ln \frac{V_{2}}{V_{1}} \\
& =\alpha n R T \ln 2 .
\end{aligned}
$$

which is positive value
\therefore spontaneous process.

