1.

As the absolute temperature is lowered below liquid-nitrogen temperatures, the phonon contribution to
the energy transport becomes significant.

(77K~10K)

In this temperature range, the thermal conductivity becomes approximately proportional to T~% for pure
metals. The thermal conductivity(k, « T~2) increases to a very high maximum as the temperature is
lowered, until the mean free path( |,k < A but small contribution) of the energy carriers becomes on the
order of the dimensions of the material sample.

When this condition reached, the boundary of the material begins to introduce a resistance to the
motion of the carriers, and the carrier mean free path becomes constant(A = constant) (approximately
equal to the material thickness). Because the specific heat decreases to zero(c, {,k; « ¢,) as the absolute
temperature approaches zero, from eqgn. (2.5) we see that the thermal conductivity would also decreases
with a decreases in temperature in this very low temperature region.

In disordered alloys and impure metals, the electronic contribution and the phonon contribution to
energy transport are of the same order of magnitude. There is an additional scattering of the energy
carriers due to the presence of impurity atoms in impure metals. This scattering effect is directly
proportional to absolute temperature. Dislocations in the material provide a scattering that is
proportional to T2, and grain boundaries introduce a scattering that is proportional to TA3 at
temperatures much lower than Debye temperature. All these effects combine to cause the thermal
conductivity of alloys and impure metals to decreases as the temperature is decreased, and the high
maximum in thermal conductivity is eliminated in alloys.

1) Separate the problem into pure metal and alloy cases (3 points)
2) Explain reasonably (7 points)

2. When heat is added to the powder in the apparatus shown in Fig.2.19, the increases in temperature tends
to raise the concentration of normal fluid, and the superfluid rushes in to equalize the concentration.
Normal fluid, because of its viscosity, cannot leave through the small openings between the find powder
particles very rapidly. The amount of helium quickly builds up within the tube as a result of this inflow of
superfluid, and finally liquid squirts out the open end of the capillary tube.

1) Helium state changes (3 points)
2) Viscosity and equilibrium (5 points)
3) Pressure difference (2 points)
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2 Also, the entropy can be defined as the function of temperature and pressure.
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From above, equation (1) can be shown that
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Also, the enthalpy can be defined as the function of temperature and pressure
h=f(T,p)

Using the calculus, the following can be derived
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Comparison (3), (4), we can obtain the following
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Using the calculus the following can be derived by chain rule,
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Also, the entropy can be defined as the function of temperature and pressure.
s=f(T,p)

Using the calculus, the following can be derived.
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From given virial equation of state, P=$(1+BT(T)) the following can be derived by partial
differentiation.
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Arranging above equation, the following can be derived
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Finally, calculating the isentropic expansion coefficient
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4. (a) (5 points)

(b) (5 points)
(c) (5 points)
(d) (10 points)
(e) (5 points)
(f) (5 points)
(9) (5 points)



5. (20 points)

points | Descriptions
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Assume Cj, = Crin, Cc = Crnax
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