
1. As the absolute temperature is lowered below liquid-nitrogen temperatures, the phonon contribution to 

the energy transport becomes significant. 

(77K~10K) 

In this temperature range, the thermal conductivity becomes approximately proportional to T−2 for pure 

metals. The thermal conductivity(kt ∝ 𝑇−2) increases to a very high maximum as the temperature is 

lowered, until the mean free path(λ ↓, kt ∝ 𝜆 but small contribution) of the energy carriers becomes on the 

order of the dimensions of the material sample.  

 

When this condition reached, the boundary of the material begins to introduce a resistance to the 

motion of the carriers, and the carrier mean free path becomes constant(λ = constant) (approximately 

equal to the material thickness). Because the specific heat decreases to zero(cv ↓, kt ∝ 𝑐𝑣) as the absolute 

temperature approaches zero, from eqn. (2.5) we see that the thermal conductivity would also decreases 

with a decreases in temperature in this very low temperature region. 

 

In disordered alloys and impure metals, the electronic contribution and the phonon contribution to 

energy transport are of the same order of magnitude. There is an additional scattering of the energy 

carriers due to the presence of impurity atoms in impure metals. This scattering effect is directly 

proportional to absolute temperature. Dislocations in the material provide a scattering that is 

proportional to T2 , and grain boundaries introduce a scattering that is proportional to T^3 at 

temperatures much lower than Debye temperature. All these effects combine to cause the thermal 

conductivity of alloys and impure metals to decreases as the temperature is decreased, and the high 

maximum in thermal conductivity is eliminated in alloys. 

 

1) Separate the problem into pure metal and alloy cases (3 points) 

2) Explain reasonably (7 points) 

 

2. When heat is added to the powder in the apparatus shown in Fig.2.19, the increases in temperature tends 

to raise the concentration of normal fluid, and the superfluid rushes in to equalize the concentration. 

Normal fluid, because of its viscosity, cannot leave through the small openings between the find powder 

particles very rapidly. The amount of helium quickly builds up within the tube as a result of this inflow of 

superfluid, and finally liquid squirts out the open end of the capillary tube. 

 

1) Helium state changes (3 points) 

2) Viscosity and equilibrium (5 points) 

3) Pressure difference (2 points) 

 

 

 

 

3.  

Points Description 

2 
Joule-Thomson coefficient JT

h
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P


 
  

 
 

Using the calculus the following can be derived by chain rule, 

1
T h P

h P T

P T h

       
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         

Rearranging the terms, 
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2 Also, the entropy can be defined as the function of temperature and pressure. 

 ,s f T p
 

Using the calculus, the following can be derived. 

P T

s s
ds dT dP

T P

    
    
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     ----(1) 



2 
The definition of specific heat under constant pressure : P

P

s
T c

T

 
 
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From the Maxwell’s equation : 
T P

s v

P T

    
    

    
 

From above, equation (1) can be shown that 

P

P

v
Tds c dT T dP

T

 
   

  ---(2) 

 

2 𝑇𝑑𝑠 =  𝑑ℎ − 𝑣𝑑𝑃 

From the above thermodynamic relation, it can be shown that P

P

v
dh c dT T v dP

T

  
    

   ----(3) 

2 Also, the enthalpy can be defined as the function of temperature and pressure 

 ,h f T p
 

Using the calculus, the following can be derived 

P T

h h
dh dT dP

T P
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    

     ----(4) 

2 Comparison (3), (4), we can obtain the following 
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1 
From given virial equation of state, 

( )
1

RT B T
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v v

 
  
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 the following can be derived by partial 

differentiation. 
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Arranging above equation, the following can be derived 
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1 Finally, calculating the Joule-Thomson coefficient 
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6 
The isentropic expansion coefficient s

s
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Using the calculus the following can be derived by chain rule, 

1
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P T s
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Rearranging The terms, 

s
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Also, the entropy can be defined as the function of temperature and pressure. 

 ,s f T p
 

Using the calculus, the following can be derived. 

P T

s s
ds dT dP

T P

    
    
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Tds T dT T dP

T P

    
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     ----(1) 

The definition of specific heat under constant pressure : P

P

s
T c

T

 
 
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From the Maxwell’s equation : 
T P

s v

P T

    
    

    
 

From basic thermodynamics, it can be shown that P

P

v
dh c dT T v dP

T

  
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   ----(3) 
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From given virial equation of state, 
( )

1
RT B T

P
v v

 
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 the following can be derived by partial 

differentiation. 
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Arranging above equation, the following can be derived 
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Finally, calculating the isentropic expansion coefficient 
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4. (a) (5 points) 

(b) (5 points) 

(c) (5 points) 

(d) (10 points) 

(e) (5 points) 

(f) (5 points) 

(g) (5 points) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

5. (20 points) 

 

points Descriptions 

10 CR =  0 
dQ̇  =  −ChdTh 

dQ̇  =  −CcdTc 

dQ̇  =  UdA(Th − Tc) 
C = ṁcp 

dTh − dTc = d(Th − Tc) = −dQ̇ (
1

Ch

−
1

Cc

) = −UdA(Th − Tc) (
1

Ch

−
1

Cc

) 

d(Th − Tc)

Th − Tc

= − (1 −
Ch

Cc

)
𝑈

𝐶ℎ

𝑑𝐴  

∫
d(Th − Tc)

Th − Tc

𝑇ℎ2−𝑇𝑐1

𝑇ℎ1−𝑇𝑐2

= − (1 −
Ch

Cc

)
𝑈

𝐶ℎ

∫ 𝑑𝐴
𝐴

0

  

Th2 − 𝑇𝑐1

𝑇ℎ1 − 𝑇𝑐2

= exp [−
𝑈𝐴

𝐶ℎ

(1 −
𝐶ℎ

𝐶𝑐

)] 

5 Assume Ch = Cmin, Cc = Cmax 

Th2 − 𝑇𝑐1

𝑇ℎ1 − 𝑇𝑐2

= exp [−
𝑈𝐴

𝐶𝑚𝑖𝑛

(1 −
𝐶ℎ

𝐶𝑐

)] 

5 Meanwhile, 𝑄̇𝑚𝑎𝑥 = 𝐶𝑚𝑖𝑛(𝑇ℎ1 − 𝑇𝑐1), 𝑄̇𝑎𝑐𝑡𝑢𝑎𝑙 = 𝐶𝑐(𝑇𝑐2 − 𝑇𝑐1) 

Therefore, ϵ =
Cc(𝑇𝑐2−𝑇𝑐1)

𝐶𝑚𝑖𝑛(𝑇ℎ1−𝑇𝑐1)
 

Also, (Th2 − 𝑇𝑐1)/(𝑇ℎ1 − 𝑇𝑐2) = (1 − 𝜖)/(1 − 𝐶𝑅𝜖) 

1 − 𝜖

1 − 𝐶𝑅𝜖
= exp [−𝑁𝑇𝑈 (1 −

𝐶𝑚𝑖𝑛

𝐶𝑚𝑎𝑥

)] (∵
UA

Cmin

= 𝑁𝑇𝑈) 

ϵ =
1 − exp[−𝑁𝑇𝑈(1 − 𝐶𝑅)]

1 − CRexp[−𝑁𝑇𝑈(1 − 𝐶𝑅)]
 

ϵ = 1 − exp(−NTU) (∵ CR = 0) 
 

 

 


