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1. (50pts) A cross section of a wing is modeled as thin-walled closed triangle,
as shown in Fig. 1. Aerodynamic center(AC) is located at 1/4 chord. Lift(L)

and aerodynamic pitching moment(A4, ) are applied at AC.
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Figure 1. Wing cross section

E=70[GPal, h=0.3[m], c:2—54h, t=0.01[m], L=4[MN], M, =6[MNm)].

a) (bpts) Select origin O at any location that you wish. Then, find the
location of the centroid C.

b) (25pts) Create a cut at any location that you wish and derive the
expression of the open section shear flow f, (s) generated by lift(ZL).
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c) (10pts) Estimate the closing shear flow f, for f,(s).

d) (10pts) Find the shear flow f, generated by the moment due to both

lift(L) and aerodynamic moment(A,).



2. (15pts) A lever-spring system consists of a rigid bar ABC and a
spring(stiffness k) as depicted in Fig. 2. The spring is un-stretched when
angle #=0. Use the principle of virtual work to determine the equilibrium
relation of the system. (Find relation between P and 6 for equilibrium)

Figure 2. Lever and spring system

3. (35pts) One side of a wing spar on landing gears is modeled as a beam
depicted in Fig. 3. The left end of the beam is restricted to rotate but
allowed to move vertically by slider and spring(k). The right end is free
conditioned. Pin support is located at L/4. The weights of the fuselage and
wing exert vertical load W and P, respectively.
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Figure 3. Beam model of wing and landing gears

L=20[m], W=3.5[MN|, P=05[MN], Hy=60[GNm?], k=30[GN/m]

a) (10pts) Formulate the equilibrium equations with reaction forces. Select
redundant force(s) as you wish and express the other forces by the
redundant force(s).

b) (10pts) Find the moment distribution A4(z,)

c) (15pts) Derive the expression of the complementary strain energy A'. And
by using principle of least work, estimate the reaction forces.
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