2016-1 Computational Structural Analysis Final Exam and Solution

※ 풀이과정을 빠짐없이 적으시오. 모든 과정은 부분점수가 있습니다.

1. Prove the stiffness matrix of the beam (30 pts)

$$
\begin{gathered}
K=\frac{H_{33}^{c}}{L^{3}}\left[\begin{array}{cccc}
12 & 6 L & -12 & 6 L \\
6 L & 4 L^{2} & -6 L & 2 L^{2} \\
-12-6 L & 12 & -6 L \\
6 L & 2 L^{2} & -6 L & 4 L^{2}
\end{array}\right] \\
\text { where } v(x)=a_{1} x^{3}+a_{2} x^{2}+a_{3} x+a_{4} \\
Q=\left\{F_{1 y} M_{1} F_{2 y} M_{2}\right\}^{T} q=\left\{v_{1} \phi_{1} v_{2} \phi_{2}\right\}^{T} \\
F_{1 y}=V(0)=H_{33}^{c} \frac{d^{3} v(0)}{d x^{3}}, M_{1}=-M(0)=-H_{33}^{c} \frac{d^{2} v(0)}{d x^{2}} \\
F_{2 y}=-V(L)=-H_{33}^{c} \frac{d^{3} v(L)}{d x^{3}}, M_{2}=M(L)=H_{33}^{c} \frac{d^{2} v(L)}{d x^{2}}
\end{gathered}
$$

solution

$$
\begin{aligned}
& v(x)=a_{1} x^{3}+a_{2} x^{2}+a_{3} x+a_{4} \\
& v(0)=v_{1}=a_{4} \\
& \phi(0)=\phi_{1}=a_{3} \\
& v(L)=a_{1} L^{3}+a_{2} L^{2}+a_{3} L+a_{4}=a_{1} L^{3}+a_{2} L^{2}+\phi_{1} L+v_{1} \ldots \ldots(1) \\
& \phi(L)=\phi_{2}=3 a_{1} L^{2}+2 a_{2} L+\phi_{1} \ldots \ldots(2) \\
& \frac{v_{2}}{L^{3}}=a_{1}+\frac{a_{2}}{L}+\frac{\phi_{1}}{L^{2}}+\frac{v_{1}}{L^{3}} \\
& a_{1}=\frac{v_{2}}{L^{3}}-\frac{a_{2}}{L}-\frac{\phi_{1}}{L^{2}}-\frac{v_{1}}{L^{3}} \\
& \phi_{2}=\frac{3 v_{2}}{L}-3 a_{2} L-3 \phi_{1}-\frac{3 v_{1}}{L}+2 a_{2} L+\phi_{1}=\frac{3}{L}\left(v_{2}-v_{1}\right)-2 \phi_{1}-a_{2} L \\
& \therefore a_{2}=\frac{3}{L^{2}}\left(v_{2}-v_{1}\right)-\frac{1}{L}\left(2 \phi_{2}+\phi_{2}\right) \\
& a_{1}=\frac{2}{L^{3}}\left(v_{1}-v_{2}\right)+\frac{1}{L^{2}}\left(\phi_{1}+\phi_{2}\right) \\
& v(x)=\left[\frac{2}{L^{3}}\left(v_{1}-v_{2}\right)+\frac{1}{L^{2}}\left(\phi_{1}+\phi_{2}\right)\right]^{3}+\left[\frac{3}{L^{3}}\left(v_{2}-v_{1}\right)-\frac{1}{L}\left(2 \phi_{1}+\phi_{2}\right)\right] x^{2}+\phi_{1} x+v_{1}
\end{aligned}
$$

$$
\begin{aligned}
& F_{1 y}=H_{33}^{c} \frac{d^{3} v(0)}{d x^{3}}=\frac{H_{33}^{c}}{L^{3}}\left(12 v_{1}+6 L p h i_{1}-12 v_{2}+6 L p h i_{2}\right) \\
& M_{1}=-H_{33}^{c} \frac{d^{2} v(0)}{d x^{2}}=\frac{H_{33}^{c}}{L^{3}}\left(6 L v_{1}+4 L^{2} \phi_{1}-6 L v_{2}+2 L^{2} \phi_{2}\right) \\
& F_{2 y}=-H_{33}^{c} \frac{d^{3} v(L)}{d x^{3}}=-\frac{H_{33}^{c}}{L^{3}}\left(-12 v_{1}-6 L p h i_{1}+12_{v 2}-6 L p h i_{2}\right) \\
& M_{2}=H_{33}^{c} \frac{d^{2} v(L)}{d x^{2}}=\frac{H_{33}^{c}}{L^{3}}\left(6 L v_{1}+2 L^{2} \phi_{1}-6 L v_{2}+4 L^{2} \phi_{2}\right)
\end{aligned}
$$

[coefficient 정의 각 2점 총 8점, $\mathrm{v}(\mathrm{x})$ 정의 3점, Force 및 Moment 각 1점 총 4점]

2. Solve the problem (40 pts)

(1) Construct the stiffness matrix of the beam (10 pts)

$$
k_{e 1}=\frac{H_{33}^{c}}{L^{3}}\left[\begin{array}{cccc}
12 & 6 L & -12 & 6 L \\
6 L & 4 L^{2} & -6 L & 2 L^{2} \\
-12 & -6 L & 12 & -6 L \\
6 L & 2 L^{2} & -6 L & 4 L^{2}
\end{array}\right], k_{e 2}=\frac{H_{33}^{c}}{L^{3}}\left[\begin{array}{cccc}
12 & 6 L & -12 & 6 L \\
6 L & 4 L^{2} & -6 L & 2 L^{2} \\
-12 & -6 L & 12 & -6 L \\
6 L & 2 L^{2} & -6 L & 4 L^{2}
\end{array}\right]
$$

$$
k
$$

[elemental stiffness 5점, global stiffness 5점]
(2) Solve the deflection at $x=L$ and its rotations at $x=L, x=2 L$ (30pts)

$$
k_{u u}=\frac{H_{33}^{c}}{L^{3}}\left[\begin{array}{ccc}
24 & 0 & 6 L \\
0 & 8 L^{2} & 2 L^{2} \\
6 L & 2 L^{2} & 4 L^{2}
\end{array}\right], q_{u u}=\left[\begin{array}{c}
v_{2} \\
\phi_{2} \\
\phi_{3}
\end{array}\right], \quad Q_{u u}=\left[\begin{array}{c}
3 P \\
0 \\
0
\end{array}\right]
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
v_{2} \\
\phi_{2} \\
\phi_{3}
\end{array}\right\}=k_{u u}^{-1} q_{u u}=\frac{1}{384 H_{33}^{c} L}\left[\begin{array}{ccc}
28 L^{4} & 12 L^{3}-48 L^{3} \\
12 L^{3} & 60 L^{3} & -48 L^{2} \\
-48 L^{3}-48 L^{2} & 192 L^{2}
\end{array}\right]\left\{\begin{array}{c}
3 P \\
0 \\
0
\end{array}\right\} \\
& \therefore v_{2}=\frac{21 L^{3} P}{96 H_{33}^{c}}, \phi_{2}=\frac{3 L^{2} P}{32 H_{33}^{c}}, \phi_{3}=-\frac{3 L^{2} P}{8 H_{33}^{c}}
\end{aligned}
$$

[k_uu stiffness matrix 5점, q_uu 5점, load array 5점, deflection and rotation 각 5점]

3. Solve the problem (30 pts)

(1) establish the governing equation and its boundary condition for exact solution (strong statement) (15 pts)

$$
\begin{aligned}
& \text { for } 0 \leq x \leq \frac{L}{2}, H_{33}^{c} u_{2_{a}}^{(4)}=p_{o} \\
& \text { for } \frac{L}{2} \leq x \leq L, H_{33}^{c} u_{2_{b}}^{(4)}=p_{o} \\
& B C 1) \text { spring } 1: H_{33}^{c} u_{2_{a}}^{(2)}(0)-k_{1} u_{2_{a}}^{(1)}(0)=0 \\
& B C 2) \text { spring } 3: H_{33}^{c} u_{2_{b}}^{(2)}(L)-k_{1} u_{2_{b}}^{(1)}(L)=0 \\
& B C 3) \text { spring } 2:-H_{33}^{c} u_{2_{b}}^{(3)}\left(\frac{L}{2}\right)+H_{33}^{c} u_{2_{a}}^{(3)}\left(\frac{L}{2}\right)=k_{2} u_{2_{a}}\left(\frac{L}{2}\right) \\
& B C 4) \geq \text { ometry }: u_{2_{a}}(0)=0, u_{2_{b}}(L)=0, u_{2_{a}}^{(0,1 \text { and } 2)}\left(\frac{L}{2}\right)=u_{2_{b}}^{(0,1 \text { and } 2)}\left(\frac{L}{2}\right)
\end{aligned}
$$

(2) Construct a 2-term trigonometric approximate solution by using defined $[\mathrm{H}]$.

Describe $[K]\{q\}=[Q]$, do not perform the inverse $[K]$ matrix. (15 pts)

$$
\begin{gathered}
{[H]=\left[\begin{array}{c}
\sin \pi \eta \\
\sin 3 \pi \eta
\end{array}\right]} \\
H(\eta)=\left\{\begin{array}{c}
\sin \pi \eta \sin 3 \pi \eta\} \\
B(\eta)=-\frac{\pi^{2}}{L^{2}}\{\sin \pi \eta 9 \sin 3 \pi \eta\} \\
B_{s}(\eta)=\frac{\pi}{L}\{\cos \pi \eta 3 \cos \pi \eta\} \\
k_{b}=H_{33}^{c} \int_{0}^{1} B(\eta) B(\eta)^{T} L d t a=\frac{H_{33}^{c}}{L^{3}} \pi^{4}\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & \frac{3^{4}}{2}
\end{array}\right] \\
k_{s 1}=k_{1} B_{s}(0) B_{s}(0)^{T} \frac{1}{L}=k_{1} \frac{\pi^{2}}{L^{3}}\left[\begin{array}{ll}
1 & 3 \\
3 & 9
\end{array}\right] \\
k_{s 3}=k_{s 1}=k_{2} H\left(\frac{1}{2}\right) H\left(\frac{1}{2}\right)^{T}=k_{2} \frac{1}{L^{3}}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] \\
r e p l a c e k_{1}=\bar{k}_{1} H_{33}^{c}, k_{2}=\bar{k}_{2} H_{33}^{c} \\
k \\
Q=p_{o} \int_{0}^{1} H(\eta) L d e t a=p_{o} \int_{0}^{1} \sin 3 \pi \eta \sin ^{2} L d e t a=p_{o} L \\
-\frac{1}{3 \pi} \cos 3 \pi \eta
\end{array}\right]=p_{o} L\left[\frac{1}{\pi}\right. \\
\left.\frac{2}{3 \pi}\right]
\end{gathered}
$$

[B matrix 3점, bending stiffness matrix 3점, spring matrix(1 and 3) 각 3점씩 6점, load array 3점]
4. Solve the problem (50 pts)

(1) Construct the stiffness matrix of the beam (15 pts)

$$
\begin{aligned}
& \eta=\frac{x}{L}, H(\eta)=\left\{\eta^{2} \eta^{3}\right\}^{T} \\
& B(\eta)=\{26 \eta\}^{T} \\
& k=\int_{0}^{2} B(\eta) 4 H_{o} B(\eta)^{T} L d \eta+\int_{2}^{3} B(\eta) 3 H_{o} B(\eta)^{T} L d \eta \\
&=\frac{4 H_{o}}{L^{3}}\left[\begin{array}{cc}
8 & 16 \\
16 & 96
\end{array}\right]+\frac{3 H_{0}}{L^{3}}\left[\begin{array}{cc}
4 & 30 \\
30 & 228
\end{array}\right]=\frac{4 H_{o}}{L^{3}}\left[\begin{array}{cc}
11 & 46 \\
46 & 267
\end{array}\right]
\end{aligned}
$$

[B matrix 3점, 각 stiffness matrix 3점씩 총 6점, 답 6점]
(2) Construct the load array of the applied force (5 pts)

$$
Q(\eta)=P H(\eta=3)=P\left\{\begin{array}{c}
9 \\
27
\end{array}\right\}
$$

[Q matrix 정의하면 2점, 답 3점]
(3) Solve the deflection at $x=3 L$ (15pts)

$$
\begin{aligned}
& q=K^{-1} Q=\frac{P L^{3}}{4 H_{0}} \frac{1}{2937-2116}\left[\begin{array}{cc}
267 & -46 \\
-46 & 11
\end{array}\right] P\left\{\begin{array}{c}
9 \\
27
\end{array}\right\} \\
& \left\{\begin{array}{l}
q_{1} \\
q_{2}
\end{array}\right\}=\frac{P L^{3}}{3284}\left[\begin{array}{c}
1161 \\
-117
\end{array}\right] \\
& \therefore u_{2}(\eta)=H(\eta)^{T} q=\frac{P L^{3}}{3284 H_{0}}\left(1161 \eta^{2}-117 \eta^{3}\right) \\
& u(\eta=3)=\frac{3645}{1642} \frac{P L^{3}}{H_{o}} \simeq 2.22 \frac{P L^{3}}{H_{o}}
\end{aligned}
$$

[Inverse 정의하면 3점, 9 matrix 변수 맞으면 6점, 답 6점점]
(4) Compare your solution at the tip with the exact solution computed using the unit load method. When you calculate the problem, round off to the nearest thousandths. (Ex $0.0396=0.04$) (15pts)

$$
\begin{gathered}
\text { hint) } \Delta=\int_{a}^{b} \frac{\widehat{M} M}{H} d x \\
\Delta=\int_{0}^{3 L} \frac{\widehat{M}_{3} M_{3}}{H_{o}} d x \text { where } M_{3}=P(3 L-x), \hat{M}_{3}=(3 L-x) \\
=\int_{0}^{2 L} \frac{P(3 L-x)^{2}}{4 H_{o}} d x+\int_{2 L}^{3 L} \frac{P(3 L-x)^{2}}{3 H_{o}} d x \\
= \\
\frac{P}{4 H_{o}} \frac{26}{3} L^{3}+\frac{P}{3 H_{o}} \frac{1}{3} L^{3}=\frac{41 P}{18 H_{o}} L^{3} \simeq 2.27 \frac{P L^{3}}{H_{o}} \\
\quad \operatorname{error}(\%)=\frac{u(\eta=3)_{\text {exact }}-u(\eta=3)_{\approx}}{u(\eta=3)_{\text {exact }}} \times 100=2.20 \%
\end{gathered}
$$

