Seoul National University 457.621.001 Biological Processes in Environmental Engineering

FINAL EXAMINATION

TIME ALLOWED: 80 MINUTES

May 31, 2023

- 1. Students may use two sheets of double-sided, A4-sized notes prepared in their own handwriting. Mechanical or electronic reproduction of any notes are not allowed.
- 2. Students should bring their own calculator which is not pre-programmed with formulae from the class.
- 3. Be aware that a student who cheated during the exam will get no credits.
- 4. Make sure your answers include units if appropriate. Watch your units! Prepare your answers in a logical, easy-to-follow format.
- 5. This exam contains 5 questions. The total points is 100.

- 1. Mark true or false (T/F) for the following statements.
 - Note: ± 1.5 points for correct answers, ± 1.5 points for incorrect answers, and <u>0</u> point if you choose not to answer.
- 1) Plasmid DNA replicates only when chromosomal DNA replicates.
- 2) Gram-positive bacteria have thicker peptidoglycan layer in their cell walls than Gram-negative bacteria do.
- 3) Competitive inhibitors permanently inactivates the reactivity of an enzyme.
- 4) Energy is released when adenosine triphosphate (ATP) is hydrolyzed to form adenosine diphosphate (ADP) and a phosphate ion (P_i).
- 5) At the stationary growth state of bacteria, the cell synthesis rate by substrate utilization approximately equals to the cell decay rate.
- 6) Sulfate-reducing bacteria are activated in the presence of dissolved oxygen.
- 7) For denitrifying heterotrophs with a half saturation coefficient of 0.08 mg NO₃-N/L, the specific growth rate due to synthesis (μ_{syn}) changes by less than 1% at the NO₃-concentration range of >10 mg NO₃-N/L.
- 8) Soluble microbial products (SMPs) are generally assumed to be biodegradable.
- 9) Settling of biomass is one of the major operational problems in the practical application of secondary treatment.
- 10) Membrane bioreactors (MBRs) are generally operated at higher volumetric organic loading rate (OLR) than conventional activated sludge.

- 2. Answer the followings.
- 1) Describe the i) structural and ii) functional difference between DNA and RNA. (7.5 points)
- 2) Classify the i) ammonia-oxidizing bacteria, ii) nitrite-oxidizing bacteria, and iii) heterotrophic denitrifiers in terms of energy source. Choose from: phototrophs, chemoorganotrophs, and chemolithotrophs. (4.5 points)
- 3) Briefly describe the typical metabolic pathway for degradation of butyrate (C₃H₇COO⁻) in bacterial cells. (6 points)
- 4) Describe key processes occurring in an anaerobic tank of an anaerobic/aerobic (A/O) process in terms of enhanced biological phosphorus removal. (6 points)
- 5) Describe how i) methyl tert-butyl ether (MTBE) and ii) 2,3,7,8-tetrachlorodibenzodioxin (dioxin) is removed from wastewater in a wastewater treatment plant with primary sedimentation and secondary biological treatment (conventional activated sludge).

Note that: MTBE and dioxin are highly resistant to biodegradation; MTBE is highly volatile whereas dioxin is non-volatile; and the logarithm of organic carbon distribution coefficient (log K_{oc}) is 1.1 for MTBE and 7.4 for dioxin.

(4 points)

- 3. Answer the followings.
- 1) Calculate the standard^{*} Gibb's free energy change for the reaction of hydrogen (H_2) and oxygen (O_2) to form water (H_2O). Use half reactions given in the appendix. (8 points)
 - * Standard condition: 25 °C, 1 atm, and unit activity for any chemicals involved (if H^+ is involved, standard condition should include $\{H^+\} = 1$ or pH = 0)
- 2) A plug flow reactor (PFR) with a length of 40 m is treating a chemical that degrades following a 1st-order reaction. The concentration of the chemical at the inlet is 10 mg/L and the concentration at the halfway (i.e., 20 m away from the inlet) of the PFR is measured to be 2.5 mg/L. Predict the concentration of the chemical i) 30 m away from the inlet and ii) at the outlet. (6 points)
- 3) An anaerobic digester receives a wastewater with a flow of 1,000 m³/d and a biodegradable COD (bCOD) value of 4,000 mg/L. At 90% bCOD removal and a net biomass yield of 0.05 g VSS/g COD, calculate the amount of methane produced in g CH₄/d from the reactor. If needed, use 4.0 g COD/g CH₄ and 1.42 g COD/g VSS as the COD value for methane and for biomass, respectively. (8 points)

4. Trichloroethylene (C_2HCl_3) is oxidized to trichloroethylene epoxide (C_2HCl_3O) by methane or toluene monooxygenase via cometabolism. For this process, write the balanced i) half reaction (for the trichloroethylene oxidation only; in the direction of reduction) and the ii) overall reaction. (15 points) 5. Following table lists parameters for a laboratory chemostat (CSTR) in operation for aerobic treatment of wastewater. Using the parameter values, answer the questions below.

Item	Symbol	Value	
Flowrate	Q^0	20 L/d	
Influent soluble BOD	S^0	$200 \text{ mg } BOD_L/L$	
Influent particulate BOD	S_p^0	0 mg BOD _L /L	
Influent active biomass	X_a^0	0 mg VSS/L	
Influent nonbiodegradable VSS (nbVSS)	X_i^0	0 mg VSS/L	
Chemostat volume	V	50 L	
Maximum specific substrate utilization rate	\hat{q}	7.5 mg BOD _L /mg VSS-d	
Half saturation coefficient	K	10 mg BOD _L /L	
Decay coefficient	b	0.10 d ⁻¹	
Biodegradable fraction of biomass	f_d	0.80	
True yield	Y	0.50 mg VSS/mg BOD _L	

Notes:

- i) Neglect the production of soluble microbial products.
- ii) Assume that biomass tank can be represented as C5H7O2N.
- 1) Calculate the effluent soluble BOD. (4 points)
- 2) Calculate the effluent particulate BOD. (6 points)
- 3) Calculate the (minimum) daily amount of i) nitrogen and ii) phosphorus that should be provided to the chemostat. Use mg/d as the unit. Assume that the influent does not contain any nitrogen or phosphorus. (10 points)

Appendix. List of half reactions

Inorganic half-reactions and their Gibb's free energy at pH = 7.0

Reaction Number I-1	Reduced-oxidized Compounds Ammonium-nitrate	Half-reaction		Textbook Table ΔG ⁰ ′ (kJ/e ⁻ eq)
		I-2	Ammonium-nitrite	$\frac{1}{6}NO_2^- + \frac{4}{3}H^+ + e^-$
I-3	Ammonium <mark>-</mark> Nitrogen	$\frac{1}{6}N_2 + \frac{4}{3}H^+ + e^-$	$= \frac{1}{3}NH_4^+$	26.70
1-4	Ferrous-Ferric	$Fe^{3+} + e^{-}$	$= Fe^{2+}$	-74.27
I-5	Hydrogen-H ⁺	$H^{+} + e^{-}$	$= \frac{1}{2}H_2$	39.87
1-6	Nitrite-Nitrate	$\frac{1}{2}NO_3^- + H^+ + e^-$	$= \frac{1}{2}NO_2^{-} + \frac{1}{2}H_2O$	-41.65
I-7	Nitrogen-Nitrate	$\frac{1}{5}NO_3^- + \frac{6}{5}H^+ + e^-$	$= \frac{1}{10}N_2 + \frac{3}{5}H_2O$	-72.20
I-8	Nitrogen-Nitrite	$\frac{1}{3}NO_2^{-} + \frac{4}{3}H^+ + e^-$	$= \frac{1}{6}N_2 + \frac{2}{3}H_2O$	-92.56
1-9	Sulfide-Sulfate	$\frac{1}{8}SO_4^{2-} + \frac{19}{16}H^+ + e^-$	$= \frac{1}{16}H_2S + \frac{1}{16}HS^- + \frac{1}{2}H_2O$	20.85
I-10	Sulfide-Sulfite	$\frac{1}{6}SO_3^{2-} + \frac{5}{4}H^+ + e^-$	$= \frac{1}{12}H_2S + \frac{1}{12}HS^- + \frac{1}{2}H_2O$	11.03
I-11	Sulfite-Sulfate	$\frac{1}{2}SO_4^{2-} + H^+ + e^-$	$= \frac{1}{2}SO_3^{2-} + \frac{1}{2}H_2O$	50.30
I-12	Sulfur-Sulfate	$\frac{1}{6}SO_4^{\ 2-} + \frac{4}{3}H^+ + e^-$	$= \frac{1}{6}S + \frac{3}{2}H_2O$	19.15
I-13	Thiosulfate-Sulfate	$\frac{1}{4}SO_4^{2-} + \frac{5}{4}H^+ + e^-$	$= \frac{1}{8}S_2O_3^{2-} + \frac{5}{8}H_2O$	23.58
I-14	Water-Oxygen	$\frac{1}{4}O_2 + H^+ + e^-$	$=\frac{1}{2}H_2O$	-78.72